Chapter 3
Consultation System

3.1 Introduction

In this and the succeeding two chapters MYCIN’s implementation
is presented in considerable detail. My goal is both to explain the
data and control structures used by the program and to describe
some of the complex and often unexpected problems that arose
during system implementation. Less detailed discussions, which pro-
vide a general overview of the material in Chapters 3 and 5, may be
found elsewhere [Shortliffe, 1973, 1975b]. In Chapter 2 the motiva-
tion behind many of MYCIN’s capabilities was explained. If you bear
those design criteria in mind throughout the remainder of this text,
you will see the important role they have played.

This chapter specifically describes the Consultation System (Sub-
program 1). As indicated in Figure 1-1, this subprogram uses both
system knowledge from the corpus of rules, plus patient data entered
by the physician, in order to generate advice for the user. Further-
more, the program maintains a dynamic data base that provides an
ongoing record of the current consultation. As a result, this chapter
must discuss both the nature of the various data structures and how
they are used or maintained by the Consultation System.

Section 3.2 describes the corpus of rules and the associated data
structures. It begins by looking at other rule-based systems and
proceeds to a formal description of the rules used by MYCIN. Our
quantitative truth model is briefly introduced and the mechanism for
rule evaluation is explained. This section also describes the clinical
parameters with which MYCIN is familiar and which form the basis
for the conditional expressions in the PREMISE of a rule.

79

MYCIN

In § 3.3 MYCIN’s goal-oriented control structure is described;
mechanisms for rule invocation and question selection are explained
at that time. The section also discusses the creation of the dynamic
data base that is the foundation for both the system’s advice and its
explanation capabilities as described in Chapter 5.

Section 3.4 is devoted to an explanation of the program’s context
tree, i.e., the network of interrelated organisms, drugs, and cultures
that characterize the patient and his current clinical condition. The
need for such a data structure is clarified and the method for
propagation (growth) of the tree is described.

As discussed in § 1.5.1, the final tasks in MYCIN’s clinical prob-
lem area are the identification of potentially useful drugs and the
selection of the best drug or drugs from that list. MYCIN’s mecha-
nism for making these decisions is discussed in § 3.5.

Section 3.6 discusses MYCIN’s mechanisms for storing patient
data and for permitting a user to changes the answer to a question.
As will be described, these two capabilities are closely interrelated.

In § 3.7, I briefly mention some contemplated future extensions
to the system. The concluding section then summarizes the advan-
tages of the MYCIN approach, making comparisons with previous
work in both Al and medical decision making.

3.2 System Knowledge
3.2.1 DECISION RULES

Automated problem-solving systems use criteria for drawing con-
clusions that often support a direct analogy to the rule-based knowl-
edge representation used by MYCIN. Consider, for example, the
conditional probabilities that underlie the Bayesian diagnosis pro-
grams discussed in § 1.3.4. Each probability statement provides
information that may be expressed in an explicit rule format:

P(hle)=X
means:

1Fz E IS KNOWN TO BE TRUE
THEN: CONCLUDE THAT H IS TRUE WITH PROBABILITY X

80

Consultation System

The advantages of an explicit rule format are discussed in Section
4.3.

It is important to note, however, that the concept of rule-based
knowledge is not unique, even for medical decision making programs.
As will be explained, MYCIN’s innovation rests with its novel appli-
cation of representation techniques and goal-oriented control struc-
tures that have been developed by Al researchers. The contributions
of the program to Al and medical decision making are summarized in
Chapter 7.

3.2.1-1 Previous Rule-Based Systems

The need for representation of knowledge in IF-THEN format so
pervades problem-solving in Al that many AI programs can be
interpreted as rule-based systems once we recognize that all deduc-
tive or inferential statements are, in effect, decision rules. In fact,
several of the new AI languages have provided data structures and
control structures based on rules (theorems) [Bobrow, 1973]. For
example, PLANNER [Hewitt, 1969, 1971, 1972] provides a for-
malism for the statement of theorems such as:

(CONSEQUENT
(PART $?2X $?2)
(GOAL (PART $2X $?Y))
(GOAL (PART $?Y $22)))

This theorem simply states, in rule form, that:

IF: YOU CAN FIND AN X THAT ISPART OF AY, AND
YOU CAN FIND A Z SUCH THAT THE Y IS PART OF THE Z
THEN: YOU CAN CONCLUDE THAT THE X ISPART OF THE Z

Although there are several examples of Al programs that use some
variety of rule-based knowledge, only four representative cases will
be introduced here. The control structures used for processing the
“rules” in these systems are not discussed until § 3.3.1.

The first example is the theorem-proving question—answering pro-
gram named QA3 [Green, 1969]. As was pointed out in the example
from PLANNER above, a theorem may be considered a rule. Green

81

MYCIN
states his rules in the predicate calculus. For example:

[11 (FA(X) (IF (IN X FIREMEN) (OWNS X RED-SUSPENDERS)))
[2] (FA (X) (IF (IN X FIRECHIEF) (IN X FIREMEN)))

are universally quantified expressions of the following rules:

[11 IF: XIS A FIREMAN
THEN: X OWNS RED SUSPENDERS

[2] IF: X IS A FIRECHIEF
THEN: X IS A FIREMAN

Green’s program uses such “rules” to answer questions regarding
system knowledge. The questions themselves may be stated as rules:

[3] Question: (FA (X) (IF
(IN X FIRECHIEF) (OWNS X RED-SUSPENDERS)))

that is,

[3] s the following rule valid?
IF: X IS A FIRECHIEF
THEN: X OWNS RED SUSPENDERS

QA3 uses [1] and [2], plus the “resolution principle” for theorem
proving [Robinson, 1965], to show that [3] is a valid rule and
thereby to answer the question affirmatively. Resolution is men-
tioned again during the discussion of control structures in § 3.3.1.

The second example of a rule-based system is the program de-
signed by Colby ef al. for modeling human belief structures [Colby,
1969]. They acquired statements of belief from a human subject and
coded them as either facts or rules of inference. Facts had associated
numerical weights representing their degree of credibility to the
human subject, but the rules reflected simple implication without
any weighting of the strength of the relationship. For example:

(F 80 SELF NOTLIKE (CHILD1 HAS AGGRESSIVENESS))

is their system’s representation for the fact (F) that the subject
(SELF) found it strongly credible (80) that she did not like the

82

Consultation System

aggressiveness of one of her children (CHILD1). A sample rule from
their data base is:

(R THEPARENT SLAP HISCHILD IMPLIES THEPARENT DISTRESS
HISCHILD)

“Implies” in their rules does not necessarily correspond to logical
implication. Instead it may represent relationships that are logical,
causal, temporal, or conceptual. Furthermore, the rules are similar to
those of MYCIN in that they represent judgments of a human subject
(cf. expert) rather than natural laws.

The main task for Colby and his coworkers involved estimating the
credibility of a given proposition describing some actual or hypo-
thetical situation. They tested their model by writing a program that
used the belief structures obtained from their human subject in order
to assess the credibility of a new hypothesis not already in the data
base. They then compared the judgment of the program with the
credibility estimate of the subject herself. System rules and facts
were linked in a graph structure that was searched by a variety of
algorithms in an attempt to assess the credibility of a new proposi-
tion. Unfortunately, the human subject left the study before a
formal evaluation of the program’s credibility estimates could be
undertaken.

In the late 1960’s, Waterman developed a rule-based system for
playing poker [Waterman, 1970]. He selected this game because,
unlike chess or other games commonly modeled by computer pro-
grams, poker is characterized by imperfect knowledge regarding the
opponent’s position. Close attention was paid to the optimal repre-
sentation of heuristics needed by a poker playing machine. He
decided that a good representation should:

(1) permit separation of the heuristics from the main body of the
program;

(2) provide identification of individual heuristics and an indica-
tion of how they are interrelated;

(3) be compatible with generalization schemes.

Clearly these desiderata correspond closely to the criterion of knowl-
edge modularity I discussed in Chapter 2. Waterman’s concern with
these factors stemmed from his desire to create a program that would

83

MYCIN

not only play poker but also learn new heuristics that could be
incorporated in a straightforward fashion and would permit improve-
ment of the system’s game over time.

Waterman pictured poker as a succession of states, with each play
causing a transition from one state to another. The situation at any
given time could therefore be characterized by a state vector, and
game heuristics would involve decisions based upon the current
status of the state vector. Thus heuristics could be represented as
production rules or so-called situation-action (SA) rules, i.e., if S is
true, then take action A. I shall not present Waterman’s formal
representation here since that would necessitate a description of his
rather complex state vector, but the following excerpt from his paper
[Waterman, 1970] should give an adequate description of the kind
of heuristic rules that he was able to code:

If your hand is excellent then bet low if the opponent tends to be a
conservative player and has just bet low. Bet high if the opponent is not
conservative, is not easily bluffed, and has just made a sizable bet. Call if the pot
is extremely large, and the opponent has just made a sizable bet.

The program could be taught such heuristics explicitly and was also
able to generalize new rules from its experience when playing the
game. The result was a system that eventually played an admirable
game of poker.

The last rule-based system for discussion in this section is one of
the foremost examples of AI techniques effectively applied to a
real-world problem domain. HEURISTIC DENDRAL is a large set of
programs designed to aid in the identification of chemical structures
from mass spectral data [Feigenbaum, 1968; Buchanan, 1969]. The
input to the system is the data derived for an unknown organic
molecule that has been subjected to mass spectral analysis. HEURIS-
TIC DENDRAL uses this input, plus a complex theory of mass
spectroscopy embodied in SA rules, to suggest one or more topologi-
cal structural formulae for the unknown molecule. The program has
a heuristic hypothesis generator that first compiles a set of all
reasonable structures on the basis of primary spectral observations. It
then uses SA rules acquired from experts in mass spectroscopy to
predict spectra for each of the structural hypotheses. A final evalua-
tion stage selects the one or more hypotheses for which the predicted

84

Consultation System

mass spectrum most closely resembles the spectrum that was empiri-
cally observed.

Acquiring the mass spectral rules from experts in organic chemis-
try, who may have limited knowledge of computers or of the
DENDRAL program, has proven to be a task of considerable diffi-
culty [Buchanan, 1970]. One is immediately reminded of the chal-
lenge in getting well-formed decision rules for MYCIN by discussing
patients with infectious disease experts. An example of one of
DENDRAL’s SA rules is the following:

1 2 3 4 5 6 7
SA Rule: (C,H)-CH2-NH-CH2-CH2-CH2-(C,H) - Breakbond (4 5)

This rule states that a seven membered chain with the characteristics
shown in the Situation part of the rule is apt to undergo a bond
break between atoms 4 and 5 when subjected to mass spectral
bombardment. It is therefore useful in predicting the spectrum of a
molecule that satisfies the situation part of the rule (since peaks in a
mass spectrum correspond to molecular fragments of a specific
identifiable mass).

The SA rules used by HEURISTIC DENDRAL have many similari-
ties to those used in Waterman’s program [Waterman, 1970]. Just as
Waterman chose a production rule system in part so that new
heuristics could be learned and integrated with ease, DENDRAL has
broadened its scope to consider mechanisms for inferring new SA
rules. This adjunct to HEURISTIC DENDRAL is known as META-
DENDRAL [Buchanan, 1971, 1972]. The idea is to analyze the
spectra of known molecules in an effort to infer the theoretical basis
for the data that are observed. Because system knowledge is main-
tained in modular SA rules and is not embedded within the programs
themselves, this kind of system enhancement is greatly facilitated.
The result is a program that often performs at the level of a
post-doctoral chemist and is able to analyze and draw inferences on
such complex cyclic structures as estrogenic steroids [Buchanan,
1973].

The decision criteria stored in MYCIN’s rules are in many ways
similar to the “rules” or ““theorems” that form the knowledge base
of the programs I have discussed. All the systems keep their rules
separate from their programs so that the functions are domain
independent and attempts at generalization are facilitated. As dis-

85

MYCIN

cussed in § 3.3.1, the rules are actually used in a variety of fashions.
Regardless of control structures, however, the advantages of identi-
fiable packets of knowledge should now be clear. A final point to
note is that, unlike the rules in the other systems described, MYCIN’s
decision criteria contain explicit weighting factors that reflect the
strength of the indicated inference.

3.2.1-2 Representation of Rules

The 200 rules currently in the MYCIN system consist of a PREM-
ISE, an ACTION, and sometimes an ELSE clause. Every rule has a
name of the form “RULE###” where “### is a three digit num-
ber. When discussing rules in their most general form, it will often be
useful to adopt a shortened form of notation. I shall use upper-case
letters for conditions and conclusions, inserting a right arrow to
indicate implication. Thus

A&B-C

signifies the rule for which the PREMISE is the conjunction of
conditions A and B and the ACTION is C.

The details of rules and how they are used are discussed through-
out the remainder of this chapter. I therefore offer a formal defini-
tion of rules that will serve in part as a guide for what is to follow.
The rules are stored as LISP data structures in accordance with the
following Backus Normal Form (BNF) description:

<rule>: : = <premise> <action> | <premise> <action> <else>
<premise> : : = (SAND <condition> . . . <condition>)
<condition> : : = { <func1> <context> <parameter>) |
(<func2> <context> <parameter> <value>) |
(<special-func> <arguments>) |
($0R <condition> . . . <condition>)
<action> : : = <concpart>
<else> : : = <concpart>
<concpart> : : = <conclusion> | <actfunc> |
(DO-ALL <conclusion> . . . <conclusion>) |
(DO-ALL <actfunc> . . . <actfunc>)
<context>: : = See § 3.2.2
<parameter>: : = See § 3.2.3
<value>::= See § 3.2.3

86

Consultation System

<func1>:: = See § 3.2.5
<func2>::= See § 3.2.5
<special-func>: : = See § 3.2.6-2
<arguments>: : = See § 3.2.6-2
<conclusion>: : = See § 3.3.3-2
<actfunc>: : = See § 3.6

Thus the PREMISE of a rule consists of a conjunction of conditions,
each of which must hold for the indicated ACTION to be taken.
Negations of conditions are handled by the individual predicates
(<func1> and <func2>) and therefore do not require a $NOT
function to complement the Boolean functions $AND and $OR. If
the PREMISE of a rule is known to be false, the conclusion or action
indicated by the ELSE clause is taken. If the truth of the PREMISE
cannot be ascertained, or the PREMISE is false but no ELSE condi-
tion exists, the rule is simply ignored.

The PREMISE of a rule is always a conjunction of one or more
conditions. Disjunctions of conditions may be represented as multi-
ple rules with identical ACTION clauses. A condition, however, may
itself be a disjunction of conditions. These conventions are somewhat
arbitrary but do provide sufficient flexibility so that any Boolean
expression may be represented by one or more rules. As is discussed
in § 3.3, multiple rules are effectively OR’ed together by MYCIN’s
control structure.

For example, 2-leveled Boolean nestings of conditions are ac-
ceptable as follows:

Legal:
[1] A&B&C-D
[2] A&(BORC)—>D
[3] (AorBorC)&(DorE)—>F

Illegal:

[4] AorBorC—D
[6] A&(Bor(C&D))—~>E

Rule [4] is correctly represented by the following three rules:

[61] A-D
[71 B->D
[81 c—-D

87

MYCIN
whereas [5] must be written as:

9] A&C&D—E
[10] A&B—E

Unlike rules that involve strict implication, the strength of an
inference in MYCIN’s rules may be modified by a certainty factor
(CF). A CF is a number from —1 to +1, the nature of which is
described in § 3.2.4 and in Chapter 4. The notation for indicating the
strength of an implication will be as follows:

A&B&C-a>D

Here the rule states that the conjunction of conditions A, B, and C
implies D with certainty factor a.

The following three examples are rules from MYCIN that have
been translated into English from their internal LISP representation
(§ 3.2.7). They represent the range of rule types available to the
system. The details of their internal representation will be explained
as [proceed.

RULEQ37

IF: 1) THE IDENTITY OF THE ORGANISM IS NOT KNOWN
WITH CERTAINTY, AND
2) THE STAIN OF THE ORGANISM IS GRAMNEG, AND
3) THE MORPHOLOGY OF THE ORGANISM IS ROD, AND
4) THE AEROBICITY OF THE ORGANISM IS AEROBIC
THEN: THERE IS STRONGLY SUGGESTIVE EVIDENCE (.8)
THAT THE CLASS OF THE ORGANISM IS
ENTEROBACTERIACEAE

RULE145

IF: 1) THE THERAPY UNDER CONSIDERATION IS ONE OF:
CEPHALOTHIN CLINDAMYCIN ERYTHROMYCIN
LINCOMYCIN VANCOMYCIN, AND
2) MENINGITIS IS AN INFECTIOUS DISEASE DIAGNOSIS
FOR THE PATIENT

THEN: IT ISDEFINITE (1) THE THE THERAPY UNDER
CONSIDERATION IS NOT A POTENTIAL THERAPY FOR
USE AGAINST THE ORGANISM

88

Consultation System
RULEQOGO
IF: THE IDENTITY OF THE ORGANISM IS BACTEROIDES

THEN: | RECOMMEND THERAPY CHOSEN FROM AMONG THE
FOLLOWING DRUGS:

1- CLINDAMYCIN (.99)
2-CHLORAMPHENICOL (.99)
3- ERYTHROMYCIN (.57)
4 - TETRACYCLINE (.28)
5- CARBENICILLIN (.27)

Before I can explain how rules such as these are invoked and
evaluated, it is necessary further to describe MYCIN’s internal organi-
zation. I shall therefore temporarily digress in order to lay some
groundwork for the description of the evaluation functions in §
3.2.5.

3.2.2 CATEGORIZATION OF RULES BY CONTEXT
3.2.2-1 Context Tree

Although it is common to describe diagnosis as inference based on
attributes of the patient, MYCIN’s decisions must necessarily involve
not only the patient but also the cultures that have been grown,
organisms isolated, and drugs that have been administered. Each of
these is termed a “context” of the program’s reasoning (see
<context> in the BNF description of rules, § 3.2.1-2). (This use of
the word “‘context” should not be confused with its meaning in high
level languages that permit temporary saving of all information
regarding a program’s current status—a common mechanism for back-
tracking and parallel processing implementations).

MYCIN currently knows about ten different context-types:

CURCULS a current culture from which organisms were isolated
CURDRUGS - an antimicrobial agent currently being administered
to a patient

CURORGS - an organism isolated from a current culture

OPDRGS - an antimicrobial agent administered to the patient
during a recent operative procedure

OPERS - an operative procedure which the patient has undergone

PERSON - the patient himself

89

MYCIN

POSSTHER - a therapy being considered for recommendation
PRIORCULS - a culture obtained in the past

PRIORDRGS - an antimicrobial agent administered to the patient previously
PRIORORGS - an organism isolated from a prior culture

Except for PERSON, each of these context-types may be instan-
tiated more than once during any given run of the consultation
program. Some may not be created at all if they do not apply to the
given patient. However, each time a context-type is instantiated it is
given a unique name. For example, CULTURE-1 is the first
CURCUL and ORGANISM-1 is the first CURORG. Subsequent
CURCULS or PRIORCULS are called CULTURE-2, CULTURE-3,
etc.

The context-types instantiated during a run of the consultation
program are arranged hierarchically in a data structure termed the
“context tree.” One such tree is shown in Figure 3-1. The context-
type for each instantiated context is shown in parentheses beside its
name. Thus, to clarify terminology, we note that a node in the
context tree is called a context and is created as an instantiation of a

SAMPLE CONTEXT TREE

PATIENT-1 (PERSON)

CULTURE-1 CULTURE-2 CULTURE-3 OPERATION-1
(CURCUL) (CURCUL) (PRIORCULS) (OPERS)
ORGANISM—1 ORGANISM~-2 ORGANISM—-3 ORGANISM-4 DRUG-4
{CURORG) (CURORG) (PRIORORGS) (PRIORORGS) (OPDRGS)

DRUG-1 DRUG-2 DRUG-3
(CURDRUGS) (CURDRUGS) (CURDRUGS)

Figure 3-1: Context tree for a sample patient with two recent positive cultures, an older
one, and a recent significant operative procedure. Nodes in the tree are termed “contexts.”

90

Consultation System

context-type. This sample context tree corresponds to a patient from
whom two current cultures and one prior culture were obtained. One
organism was isolated from each of the current cultures, but the
patient is being treated (with two drugs) for only one of the current
organisms. Furthermore, two organisms were grown from the prior
culture but therapy was instituted to combat only one of these.
Finally, the patient has had a recent operative procedure during
which he was treated with an antimicrobial agent.

The context tree is useful not only because it gives structure to the
clinical problem (Figure 3-1 already tells us a good deal about
PATIENT-1), but also because we often need to be able to relate one
context to another. For example, in considering the significance of
ORGANISM-2, MYCIN may well want to be able to reference the
site of the culture from which ORGANISM-2 was obtained. Since the
patient has had three different cultures, we need an explicit mecha-
nism for recognizing that ORGANISM-2 came from CULTURE-2,
not CULTURE-1 or CULTURE-3. The technique for dynamic propa-
gation (i.e., growth) of the context tree during a consultation is
described in § 3.4).

3.2.2-2 Interrelationship of Rules
and Context Tree

The 200 rules currently used by MYCIN are not explicitly linked
in a decision tree or reasoning network. This feature is in keeping
with our desire to keep the system knowledge modular and manipu-
lable. However, rules are subject to categorization in accordance with
the context-types for which they are most appropriately invoked.
For example, some rules deal with organisms, some with cultures,
and still others deal solely with the patient himself. MYCIN’s current
rule categories are as follows (context-types to which they may be
applied are enclosed in parentheses):

CULRULES - rules that may be applied to any culture
(CURCULS or PRIORCULS)

CURCULRULES - rules that may be applied only to current cultures
(CURCULS)

CURORGRULES- rules that may be applied only to current organisms
(CURORGS)

91

MYCIN

DRGRULES - rules that may be applied to any antimicrobial agent that
has been administered to combat a specific organism
(CURDRUGS PRIORDRGS)
OPRULES - rules that may be applied to operative procedures (OPERS)
ORDERRULES - rules that are used to order the list of possible
therapeutic recommendations (POSSTHER)
ORGRULES - rtules that may be applied to any organism (CURORGS
or PRIORORGS)
PATRULES - rules that may be applied to the patient (PERSON)
PDRGRULES - rules that may be applied only to drugs given
to combat prior organisms (PRIORDRUGS)
PRCULRULES - rules that may be applied only to prior cultures
(PRIORCULS)
PRORGRULES - rules that may be applied only to organism isolated
from prior cultures (PRIORORGS)
THERULES - rules that store information regarding drugs of choice

(§ 3.5).

Every rule in the MYCIN system belongs to one, and only one, of
these categories. Furthermore, selecting the proper category for a
newly acquired rule does not present a problem. In fact, as is
discussed in § 6.3, category selection can be automated to a large
extent.

Consider now a rule such as:

RULE124
IF: 1) THE SITE OF THE CULTURE IS THROAT, AND
2) THE IDENTITY OF THE ORGANISM IS
STREPTOCOCCUS

THEN: THERE IS STRONGLY SUGGESTIVE EVIDENCE (.8)
THAT THE SUBTYPE OF THE ORGANISM IS NOT
GROUP-D

This is one of MYCIN’s ORGRULES and may thus be applied either
to a CURORGS context or a PRIORORGS context. Referring back
to Figure 3-1, suppose RULE124 above were applied to
ORGANISM-2. The first condition in the PREMISE refers to the site
of the culture from which ORGANISM-2 was isolated (i.e.,
CULTURE-2) and not to the organism itself (i.e., organisms do not
have SITES, but cultures do). The context tree is therefore impor-

92

Consultation System

tant, as I mentioned above, for determining the proper context when
a rule refers to an attribute of a node in the tree other than the
context to which the rule is being explicitly applied. Note that this
means that a single rule may refer to nodes at several levels in the
context tree. The rule is categorized simply on the basis of the lowest
context-type (in the tree) that it may reference. Thus RULE 124 is an
ORGRULE rather than a CULRULE.

3.2.3 CLINICAL PARAMETERS

This subsection describes the data types indicated by
<parameter> and <value> in the BNF description of rules (§
3.2.1-2). Although I have previously asserted that all MYCIN’s
knowledge is stored in its corpus of rules, the clinical parameters and
their associated properties comprise an important class of second
level knowledge. I shall first explain the kind of parameters used by
the system, and will then describe their representation.

A clinical parameter is a characteristic of one of the contexts in
the context tree, i.e., the name of the patient, the site of a culture,
the morphology of an organism, the dose of a drug, etc. All such
attributes will be termed “clinical parameters.” A patient’s status
would be completely specified by a context tree in which values were
known for all the clinical parameters characterizing each node in the
tree (assuming the parameters known to MYCIN encompass all those
that are clinically relevant—a dubious assumption at present). In
general this is more information than is needed, however, so one of
MYCIN’s tasks is to identify those clinical parameters that need to be
considered for the patient about whom advice is being sought. This
task is similar to the problem of sequential test selection that was
relevant to many of the programs discussed in § 1.3.

The concept of an attribute-object-value triple is common to much
of the AI field. This associative relationship is a basic data type for
the SAIL language [Feldman, 1972] and is the foundation for the
property-list formalism in LISP [McCarthy, 1962]. Relational
predicates in the predicate calculus also represent associative triples.
The point is that many facts may be expressed as triples that state
that some object has an attribute with some specified value. Stated in
the order <attribute object value>, examples include:

93

MYCIN

(COLOR BALL RED)
(OWNS FIREMAN RED-SUSPENDERS)
(AGE BOB 22)

(FATHER CHILD “DADDY")
(GRAMSTAIN ORGANISM GRAM-POSITIVE)
(DOSE DRUG 1.5-GRAMS)

(MAN BOB TRUE)

(WOMAN BOB FALSE)

Note that the last two examples are different from the others since
they represent a rather different kind of relationship. In fact, several
authors would classify the first six as ‘“relations’ and the last two as
“predicates,” using the simpler notation:

MAN(BOB)
~WOMAN(BOB)

Regardless of whether it is written as MAN(BOB) or (MAN BOB
TRUE), this binary predicate statement has rather different charac-
teristics from the relations that form natural triples. This distinction
will become more clear later (see “yes—no” parameters below).

MYCIN stores inferences and data using the attribute-object-value
concept I have just described. The object is always some context in
the context tree, and the attribute is a clinical parameter appropriate
for that context. Information stored using this mechanism may be
retrieved and updated in accordance with a variety of conventions
described throughout this chapter.

3.2.3-1 Three Kinds of Clinical Parameters

There are three fundamentally different kinds of clinical parame-
ters. The simplest variety are the ones we call “single-valued” param-
eters. These are attributes such as the name of the patient or the
identity of the organism. In general, they have a large number of
possible values that are mutually exclusive. As a result, only one can
be the true value, although several may seem likely at any point
during the consultation.

“Multi-valued” parameters also generally have a large number of
possible values. The difference is that the possible values need not be

94

Consultation System

mutually exclusive. Thus, such attributes as a patient’s drug allergies
or a locus of infection may have multiple values, each of which is
known to be correct.

The third kind of clinical parameter corresponds to the binary
predicate discussed above. These are attributes that are either true or
false for the given context. For example, the significance of an
organism is either true or false (yes or no), as is the parameter
indicating whether the dose of a drug is adequate. Attributes of this
variety are called “yes—no” parameters. They are, in effect, a special
kind of “single-valued” parameter for which there are only two
possible values.

3.2.3-2 Classification and Representation
of Parameters

The clinical parameters known to MYCIN are categorized in accor-
dance with the context to which they apply. These categories in-
clude:

PROP-CUL - those clinical parameters that are attributes of cultures
(e.g., site of the culture, method of collection)

PROP-DRG - those clinical parameters that are attributes of administered
drugs (e.g., name of the drug, duration of administration)

PROP-OP - those clinical parameters that are attributes of operative
procedures (e.g., the cavity, if any, opened during the
procedure)

PROP-ORG - those clinical parameters that are attributes of organisms
(e.g., identity, gram stain, morphology)

PROP-PT - those clinical parameters that are attributes of the patient

(e.g., name, sex, age, allergies, diagnoses)

PROP-THER - those clinical parameters that are attributes of therapies
being considered for recommendation (e g recommended
dosage, prescribing name)

These categories encompass all clinical parameters used by the sys-
tem. Note that any of the nodes (contexts) in the context tree for
the patient may be fully characterized by the values of the set of

clinical parameters in one of these categories.
Each of the 65 clinical parameters currently known to MYCIN has
an associated set of properties that is used during consideration of

95

MYCIN

yes—no parameter

FEBRILE: <FEBRILE is an attribute of a patient and is therefore a
member of the list PROP-PT>
EXPECT: (YN)
LOOKAHEAD: (RULE149 RULE109 RULE045)
PROMPT: (Is * febrile?)
TRANS: (* IS FEBRILE)

single-valued parameter

IDENT: <IDENT is an attribute of an organism and is therefore a
member of the list PROP-ORG>
CONTAINED-IN: (RULE030)
EXPECT: (ONEOF (ORGANISMS)
LABDATA: T
LOOKAHEAD: (RULEO0O4 RULEQO54 ... RULE168)
PROMPT: (Enter the identity (genus) of * :)
TRANS: (THE IDENTITY OF *)
UPDATED-BY: (RULEO21 RULEQO3 ... RULE166)

multi-valued parameter

INFECT: <INFECT is an attribute of a patient and is therefore a
member of the list PROP-PT>
EXPECT: (ONEOF PERITONITIS BRAIN-ABSCESS MENINGITIS
BACTEREMIA UPPER-URINARY-TRACT-INFECTION
... ENDOCARDITIS)
LOOKAHEAD: (RULE115 RULE149... RULE045)
PROMPT1: (Is there evidence that the patient has a (VALU) ?)
TRANS: (AN INFECTIOUS DISEASE DIAGNOSIS FOR *)
UPDATED-BY: (RULE157 RULEO22... RULE105)

Figure 3-2: Examples of the three types of clinical parameters. As shown, each clinical
parameter is characterized by a set of “properties” described in the text.

the parameter for a given context. Figure 3-2 presents three clinical
parameters that together demonstrate several of these properties:

EXPECT - this property indicates the range of expected values that
the parameter may have.
if = (YN) then the parameter is a “yes—no’’ parameter
if = (NUMB) then the expected value of the parameter is a
number

96

Consultation System

if = (ONEOF <list>) then the value of the parameter must
be a member of <list>
if = (ANY) then there is no restriction on the range of values

that the parameter may have

PROMPT - this property is a sentence used by MYCIN when it
requests the value of the clinical parameter from the
user; if there is an asterisk in the phrase (see Figure 3-2),
it is replaced by the name of the context about which
the question is being asked; this property is used only
for *“yes—no” or “single-valued” parameters.

PROMPT1 - this property is similar to PROMPT except it is used if
the clinical parameter is a “multi-valued” parameter; in
these cases MYCIN only asks the question about a single
one of the possible parameter values; the value of
interest is substituted for (VALU) in the question.

LABDATA - this property is a flag that is either T or NIL;if T it
indicates that the clinical parameter is a piece of
primitive data, the value of which may be known with
certainty to the user (see § 3.3.2-1).

LOOKAHEAD - this property is a list of all rules in the system that
reference the clinical parameter in their PREMISE.

UPDATED-BY - this property is a list of all rules in the system in which
the ACTION or ELSE clause permits a conclusion to be
made regarding the value of the clinical parameter.

CONTAINED-IN - this property is a list of all rules in the system in which the
ACTION or ELSE clause references the clinical
parameter but does not cause its value to be updated.

TRANS - this property is used for translating the clinical
parameter into its English representation (see § 3.2.7);
the context of the parameter is substituted for the
asterisk during translation.

DEFAULT - this property is used only with clinical parameters for
which EXPECT = (NUMB); it gives the expected units
for numerical answers (e.g., days, years, grams, etc.)

CONDITION - this property, when utilized, is an executable LISP
expression that is evaluated before MYCIN requests the
value of the parameter; if the CONDITION is true, the
question is not asked (e.g., “Don’t ask for an organism’s
subtype if its genus is not known by the user™).

The uses of these properties will be discussed throughout the re-
mainder of this chapter and in Chapter 5. However, a few additional
points are relevant here. First, it should be noted that the order of

97

MYCIN

rules on the properties LOOKAHEAD, UPDATED-BY, and
CONTAINED-IN is arbitrary and does not affect the program’s
advice. Second, TRANS is the only property that must exist for
every clinical parameter. Thus, for example, if there is no PROMPT
or PROMPT1 stored for a parameter, the system assumes that it
simply cannot ask the user for the value of the parameter. Finally,
note in Figure 3-2 the difference in the TRANS property for “yes—
no” and non-“yes—no” parameters. In general, a parameter and its
value may be translated as:

THE <attribute> OF <object> IS <value>

However, for a “yes—no” parameter such a FEBRILE, it is clearly
necessary to translate the parameter in a fashion other than:

THE FEBRILE OF PATIENT-1 IS YES

Our solution has been to suppress the YES altogether and simply to
say:

PATIENT-1 IS FEBRILE

3.2.4 CERTAINTY FACTORS

Chapter 4 presents a detailed description of certainty factors and
their theoretical foundation. This section therefore provides only a
brief overview of the subject. A familiarity with the characteristics of
certainty factors (CF’s) is necessary, however, for the discussion of
MYCIN during the remainder of this chapter.

The value of every clinical parameter is stored by MYCIN along
with an associated certainty factor that reflects the system’s “belief”
that the value is correct. This formalism is necessary because, unlike
domains in which objects either have or do not have some attribute,
in medical diagnosis and treatment there is often uncertainty regard-
ing attributes such as the significance of the disease, the efficacy of a
treatment, or the diagnosis itself. As discussed in § 1.3, most medical
decision making programs use probability to reflect the uncertainties.
CF’s are an alternative to conditional probability that offer several
advantages in MYCIN’s domain (as described in Chapter 4).

A certainty factor is a number between —1 and +1 that reflects the

98

Consultation System

degree of belief in a hypothesis. Positive CF’s indicate there is
evidence that the hypothesis is valid. The larger the CF, the greater
the belief in the hypothesis. When CF=1, the hypothesis is known to
be correct. On the other hand, negative CF’s indicate that the weight
of evidence suggests that the hypothesis is false. The smaller the CF,
the greater the belief that the hypothesis is invalid. CF=—1 means
that the hypothesis has been effectively disproven. When CF=0, there
is either no evidence regarding the hypothesis, or the supporting
evidence is equally balanced by evidence suggesting that the hypothe-
sis is not true.

MYCIN’s hypotheses are statements regarding values of clinical
parameters for the various nodes in the context tree. For example,
sample hypotheses are:

h1 = The identity of ORGANISM-1 is streptococcus
h2 =PATIENT-1 is febrile
h3 = The name of PATIENT-1 is John Jones

We use the notation CF[h,E]=X to represent the certainty factor for
the hypothesis h based upon evidence E. Thus if CF[h1,E]=.8,
CF[h2,E]1=—3, and CF[h3,E]=+1, the three sample hypotheses
above may be qualified as follows:

CF[h1,E]=8 : There is strongly suggestive evidence (.8) that the
identity of ORGANISM-1 is streptococcus

CF[h2,E1=—3 : There is weakly suggestive evidence (.3) that PATIENT-1
is not febrile

CF[h3,E]=+1 : Itis definite (1) that the name of PATIENT-1 is John
Jones

Certainty factors are used in two ways. First, as noted, the value
of every clinical parameter is stored with its associated certainty
factor. In this case the evidence E stands for all information cur-
rently available to MYCIN. Thus, if the program needs the identity
of ORGANISM-1, it may look in its dynamic data base and find:

IDENT of ORGANISM-1 = ((STREPTOCOCCUS .8}))

The second use of CF’ is in the statement of decision rules
themselves. In this case the evidence E corresponds to the conditions
in the PREMISE of the rule. Thus

99

MYCIN
A&B&C—x>D

is a representation of the statement CF[D, (A&B&C)]=x. For exam-
ple, consider the following rule:

IF: 1} THE STAIN OF THE ORGANISM IS GRAMPOS, AND
2) THE MORPHOLOGY OF THE ORGANISM IS COCCUS, AND
3) THE GROWTH CONFORMATION OF THE ORGANISM
IS CHAINS
THEN: THERE IS SUGGESTIVE EVIDENCE (.7) THAT THE
IDENTITY OF THE ORGANISM IS STREPTOCOCCUS

This rule may also be represented as CF[h1,e]=.7 where h1 is the
hypothesis that the organism (context of the rule) is a streptococcus
and e is the evidence that it is a gram positive coccus growing in
chains.

Since diagnosis is, in effect, the problem of selecting a disease
from a list of competing hypotheses, it should be clear that MYCIN
may simultaneously be considering several hypotheses regarding the
value of a clinical parameter. These hypotheses are stored together,
along with their CF’s, for each node in the context tree. We use the
notation Val[C,P] to signify the set of all hypotheses regarding the
value of the clinical parameter P for the context C. Thus if MYCIN
has reason to believe that ORGANISM-1 may be either a strepto-
coccus or staphylococcus, although pneumococcus has been ruled
out, its dynamic data base might well show:

Val [ORGANISM-1,IDENT] = ((STREPTOCOCCUS .6)
(STAPHYLOCOCCUS .4)
(DIPLOCOCCUS-PNEUMONIAE —1))

Note that Chapter 5 shows that the sum of the CF's for supported
hypotheses regarding a “single-valued” parameter (i.e., those parame-
ters for which the hypotheses are mutually exclusive) should not
exceed 1. “Multi-valued” parameters, on the other hand, may have
several hypotheses that are all known to be true. For example:

Val [PATIENT-1,ALLERGY] = ((PENICILLIN 1) (AMPICILLIN 1)
(CARBENICILLIN 1) (METHICILLIN 1))

As soon as a hypothesis regarding a “single-valued” parameter is
100

Consultation System

proved to be true, all competing hypotheses are effectively dis-
proved:

Val[ORGANISM-1,IDENT] = ((STREPTOCOCCUS 1)
(STAPHYLOCOCCUS 1)
(DIPLOCOCCUS-PNEUMONIAE —1))

In Chapter 4 it is demonstrated that CF[h,E] = —CF[not.h,E].
This observation has important implications for the way MYCIN
handles the binary-valued attributes we call ‘“‘yes—no” parameters.
Since ‘“yes” is “not.no,” it is not necessary to consider ‘“‘yes” and
“no” as competing hypotheses for the value of a “yes—no” parameter
(as we do for “single-valued” parameters). Instead we can always
express “no’ as “yes” with a reversal in the sign of the CF. This
means that Val[C,P] is always equal to the single value “yes,” along
with its associated CF, when P is a “‘yes—no’’ parameter.

In § 3.3.3-2, I discuss MYCIN’s mechanism for adding to the list
of hypotheses in Val[C,P] as new rules are invoked and executed.
The following points should be emphasized here, however:

(1) the strength of the conclusion associated with the execution of a rule
reflects not only the CF assigned to the rule, but also the program’s
degree of belief regarding the validity of the PREMISE;

(2) the support of several rules favoring a single hypothesis may be assimi-
lated incrementally on the list Val[C,P] by using special combining
functions described in § 4.6.

3.2.5 FUNCTIONS FOR EVALUATION
OF PREMISE CONDITIONS

This section describes the evaluation of the individual conditions
(see <condition>, § 3.2.1-2) in the PREMISE of rules. Conditions in
general evaluate to “true” or “false” (T or NIL). Thus, they may at
first glance be considered simple predicates on the values of clinical
parameters. However, since there may be several competing hypothe-
ses on the list Val[C,P], each associated with its own degree of belief
as reflected by the CF, conditional statements regarding the value of
parameters can be quite complex. All predicates are implemented as
LISP functions. The functions that undertake the required analysis
arc of three varieties, specified by the designations <funci1>,

101

MYCIN

<func2>, and <special-func> in the BNF rule description (§
3.2.2-1). This section explains the <func1> and <func2> predicates.
The <special-func> category is deferred until § 3.2.6-2, however, so
that I may first introduce our specialized knowledge structures (§
3.2.6-1).

There are four predicates in the category <func1>. These func-
tions do not form conditionals on specific values of a clinical pa-
rameter, but are concerned with the more general status of knowl-
edge regarding the attributes in question. For example,
KNOWN[ORGANISM-1, IDENT] is an invocation of the <func1>
predicate KNOWN; it would return true if the identity of ORGA-
NISM-1 were known, regardless of the value of the clinical parameter
IDENT. KNOWN and the other <func1> predicates may be formally
defined as follows:

Predicates of the class <func1>:

Let V=Val[C,P] be the set of all hypotheses regarding the value of the clinical
parameter P for the context C

Let Mv=Max[V] be the most strongly supported hypothesis in V (i.e., the
hypothesis with the largest CF)

Let CFmv=CF[Mv,E] be the certainty factor of Mv given E, where E is the total

available evidence
Then, if P is either a “single-valued” or “multi-valued” parameter, the four
predicates (functions) may be specified as follows:

FUNCTION IF: THEN: ELSE:
KNOWNIC,P] CFmv>.2 T NIL
NOTKNOWN(C,P] CFmv<.2 T NIL
DEFINITE[C,P] CFmv=1 T NIL
NOTDEFINITE[C,P] CFmv<1 T NIL

In words, these definitions reflect MYCIN’s convention that the
value of a parameter is KNOWN if the CF of the most highly
supported hypothesis exceeds .2. The .2 threshold was selected
empirically. The implication is that a positive CF less than .2 reflects
so little evidence supporting the hypothesis that there is virtually no
reasonable hypothesis currently known. The interrelationships
among these functions are diagrammed on a CF number line in

102

Consultation System

e NETRNOWN-——— s

0<~————KNOWN |

-1 =2 0 2 +1
I | I | |
| | | | ;
DEFINITE

b= NOTDEFINITE 0

Figure 3-3: Diagram indicating the range of CF values over which the <func1> predicates
hold true when applied to multivalued or single-valued (i.e., non-*“yes—no”) clinical param-
eters. Vertical lines and zeros distinguish closed and nonclosed certainty factor ranges,
respectively.

Figure 3-3. Regions specified are the range of values for CFmv over
which the function returns T.

As was pointed out in the previous section, however, “yes—no”
parameters are special cases because we know CF[YES,E] =
—CF[NO,E]. Since the values of ‘“yes—no” parameters are always
stored in terms of YES, MYCIN must recognize that a YES with
CF=—.9 is equivalent to a NO with CF=.9. The definitions of our four
<func1> predicates above do not reflect this distinction. Therefore,
when P is a “yes—no’ parameter, the four functions are specified as
follows:

FUNCTION: IF: THEN: ELSE:
KNOWNIC,P] [CFmv[>2 T NIL
NOTKNOWNI[C,P] [CFmv<2 T NIL
DEFINITE[C,P] |[CFmv|=1 T NIL
NOTDEFINITE[C,P] [CFmvI<1 T NIL

Figure 3-4 shows the relationship among these functions for “yes—
no” parameters.

There are nine predicates in the category <func2>. Unlike the
<func1> predicates, these functions control conditional statements
regarding specific values of the clinical parameter in question. For
example, SAME[ORGANISM-1, IDENT, E.COLI] is an invocation

103

MYCIN

l~NoTKNOWN~|
| KNOWN 0 0~———KNOWN——|
-1 =2 0 2 +1
| I I | |
I | | | |
DEFINITE DEFINITE
0 NOTDEFINITE 0

Figure 3-4: Diagram indicating the range of CF values over which the <func1> predicates
hold true when applied to “yes—no” clinical parameters.

of the <funcZ> predicate SAME; it would return true if the identity
of ORGANISM-1 were known to be E.coli. SAME and the other
<func2> predicates may be formally defined as follows:

Predicates of the class <func2>:

Let V=Val[C,P] be the set of all hypotheses regarding the value of the clinical
parameter P for the context C.

Let I=Intersection[V,LST] be the set of all hypotheses in V which also occur in
the set LST; LST contains the possible values of P
for comparison by the predicate-function; it usually
contains only a single element; if no element in LST
isalsoin V, I is simply the empty set.

Let Mi=Max[I] be the most strongly confirmed hypothesis in 1; thus Mi is NIL if

| is the empty set;

Let CFmi=CF[Mi,E] be the certainty factor of Mi given E, where CFmi=0 if Mi

is NIL

Then the <func2> predicates are defined as follows:

FUNCTION: IF: THEN: ELSE:
SAMEI[C,P,LST] CFmi>.2 CFmi NIL
THOUGHTNOTIC,P,LST] CFmi<-.2 —CFmi NIL
NOTSAME[C,P,LST] CFmis.2 T NIL
MIGHTBE[C,P.LSTI] CFmi=-.2 T NIL
VNOTKNOWNI[C,P,LST] [CFmi|<.2 T NIL
DEFIS[C,P,LST] CFmi=+1 T NIL

104

Consultation System

DEFNOTIC,P,LSTI] CFmi=—1 T NIL
NOTDEFIS[C,P,LST] .2<CFmi<1 T NIL
NOTDEFNOTI[C,P,LST] —1<CFmi<-.2 T NIL

The names of the functions have been selected to reflect their
semantics. Figure 3-5 shows a graphic representation of each func-
tion and also explicitly states the interrelationships among them.

Note that SAME and THOUGHTNOT are different from all the
other functions that I have discussed in that they return a number
(CF) rather than T if the defining condition holds. This feature
permits MYCIN to record the degree to which PREMISE conditions
are satisfied. In order to explain this point, I must discuss the $AND
function that oversees the evaluation of the PREMISE of a rule. The
reader will recall the BNF description from § 3.2.1-2:

|«——THOUGHTNOT——0 0 SAME

<VNOTKNOWN>|

b NOTSAME |

|«——————MIGHTBE ,

-1 =42 0 2 +1
| I I I |
DEFNOT DEFIS
0<~——NOTDEFNOT——0 0<——NOTDEFIS—=0

SAME or NOTSAME = THOUGHTNOT or MIGHTBE =T
NOTSAME = VNOTKNOWN or THOUGHTNOT
THOUGHTNOT = NOTDEFNOT or DEFNOT
MIGHTBE = VNOTKNOWN or SAME
SAME = NOTDEFIS or DEFIS

Figure 3-5: Diagram indicating the range of CF values over which the <func2> predicates

hold true. The logical relationships of these predicates are also summarized beneath the
diagram.

105

MYCIN

<premise>: : = (PAND <condition> . . . <condition>>)

$AND is similar to the standard LISP “AND” function in that it
evaluates its conditional arguments one at a time, returning false
(NIL) as soon as a condition is found to be false, and otherwise
returning true (T). The difference is that SAND expects some of its
conditions to return numerical values rather than simply T or NIL. If
an argument condition returns NIL (or a number equal to .2 or less)
it is considered false and $AND stops considering subsequent argu-
ments. On the other hand, nonnumeric values of conditions are
interpreted as indicating truth with CF=1. Thus each true condition
either returns a number or a non-NIL value that is interpreted as 1.
SAND then maintains a record of the lowest value returned by any
of its arguments. This number, termed TALLY, is a certainty tally
that indicates MYCIN’s degree of belief in the PREMISE (see Com-
bining Function 2 in § 4.6). Thus .2<TALLY<1, where TALLY=1
indicates that MYCIN believes the PREMISE to be true with cer-
tainty.

Most of the predicates that evaluate conditions in the PREMISE of
a rule return either T or NIL as we have shown. Consider, however,
the semantics of the most commonly used function, SAME, and its
analogous function, THOUGHTNOT. Suppose MYCIN knows:

Val [ORGANISM-2, IDENT]. = ((STREPTOCOCCUS .7)
(STAPHYLOCOCCUS .3))

Then it seems clear that SAME[ORGANISM-1,IDENT,
STREPTOCOCCUS] is in some sense “more true” than
SAME[ORGANISM-1,IDENT,STAPHYLOCOCCUS], even though
both hypotheses exceed the threshold CF=.2. If SAME merely re-
turned T, this distinction would be lost. Thus, for this example:

SAME[ORGANISM-1,IDENT,STREPTOCOCCUS]

=.7
SAME[ORGANISM-1,IDENT,STAPHYLOCOCCUS] =

I

whereas
KNOWN[ORGANISM-1,IDENT] =T
and

NOTDEFIS[ORGANISM-1,IDENT,STREPTOCOCCUS] =T
106

Consultation System

A similar argument explains why THOUGHTNOT returns a CE
rather than T. It is unclear whether any of the other <func2>
predicates should return a CF rather than T; my present conviction is
that the semantics of those functions do not require relative weight-
ings in the way that SAME and THOUGHTNOT do.

Let me give a brief example, then, of the way in which the
PREMISE of a rule is evaluated by $AND. Consider the following
ORGRULE:

IF: 1) THE STAIN OF THE ORGANISM IS GRAMNEG, AND
2) THE MORPHOLOGY OF THE ORGANISM IS ROD, AND
3) THE AEROBICITY OF THE ORGANISM IS AEROBIC

THEN: THERE ISSTRONGLY SUGGESTIVE EVIDENCE (.8) THAT THE
CLASS OF THE ORGANISM IS ENTEROBACTERIACEAE

which is internally coded in LISP as:

PREMISE: ($AND (SAME CNTXT GRAM GRAMNEG)
(SAME CNTXT MORPH ROD)
(SAME CNTXT AIR AEROBIC))
ACTION: (CONCLUDE CNTXT CLASS
ENTEROBACTERIACEAE TALLY .8)

Suppose this rule has been invoked for consideration of
ORGANISM-1, i.e., the context of the rule (CNTXT) is the node in
the context tree termed ORGANISM-1. Now suppose that MYCIN
has the following information in its data base (how it gets there is the
subject of § 3.3.3):

Val[ORGANISM-1,GRAM] = ((GRAMNEG 1.0))
Val[ORGANISM-1,MORPH] = ((ROD .8) (COCCUS .2))
Val [ORGANISM-1,AIR] = ((AEROBIC .6) (FACUL .4))

$AND begins by evaluating SAME[ORGANISM-1,GRAM,
GRAMNEG]. The function returns CF=1.0, so TALLY is set to 1.0
(see definition of TALLY in the description of $AND above). Next
$AND evaluates the second PREMISE condition, SAME
[ORGANISM-1,MORPH,ROD], which returns 0.8. Since the first
two conditions both were found to hold, $AND evaluates SAME
[ORGANISM-1,AIR,AEROBIC] which returns 0.6. Thus, TALLY is
set to 0.6 and $AND returns T. Since the PREMISE is true, MYCIN
may now draw the conclusion indicated in the ACTION portion of

107

MYCIN

the rule. Note, however, that CONCLUDE has as arguments both .8
(i.e., the CF for the rule as provided by the expert) and TALLY Gi.e.,
the certainty tally for the PREMISE). CONCLUDE and the other
functions that control inferences are described in § 3.3.3-2.

3.2.6 (*) STATIC KNOWLEDGE STRUCTURES

Although all MYCIN’s inferential knowledge is stored in rules,
there are various kinds of static definitional information that are
stored differently even though they are accessible from rules.

3.2.6-1 (*) Tabular and List-based Knowledge

There are three categories of knowledge structures that could be
discussed in this section. However, one of them, MYCIN’s 800-word
dictionary, is used principally for natural language understanding. Its
details are described elsewhere [Shortliffe, 1974b]. The other two
data structures are simple linear lists and knowledge tables.

Simple lists: Simple lists provide a mechanism for simplifying
references to variables and optimizing knowledge storage by avoiding
unnecessary duplication. Two examples should be sufficient to ex-
plain this point.

In § 3.2.3-2, I showed that the EXPECT property for the clinical
parameter IDENT is:

(ONEOF (ORGANISMS))

ORGANISMS is the name of a linear list containing the names of all
bacteria known to MYCIN (see § 1.5.1). There is also a clinical
parameter named COVERFOR for which the EXPECT property is:

(ONEOF ENTEROBACTERIACEAE (ORGANISMS) G+COCCI G—-COCCI)

Thus, by storing the organisms separately on a list named
ORGANISMS, we avoid having to duplicate the list of names in the
EXPECT property of both IDENT and COVERFOR. Furthermore,
using the variable name rather than internal pointers to the list
structure facilitates references to the list of organisms whenever it is
needed.

108

Consultation System

A second example involves the several rules in the system that
make conclusions based on whether an organism was isolated from a
site that is normally sterile or nonsterile. STERILESITES is the name
of a simple list containing the names of all normally sterile sites
known to the system. There is a similar list named
NONSTERILESITES. Thus many rules can have the condition
(SAME CNTXT SITE STERILESITES) and the sites need not be
listed explicitly in each rule.

Knowledge tables: In conjunction with the special functions dis-
cussed in the next subsection, MYCIN’s knowledge tables permit a
single rule to accomplish a task that would otherwise require several
rules. A knowledge table contains a comprehensive record of certain
clinical parameters plus the values they take on under various circum-
stances. For example, one of MYCIN’s knowledge tables itemizes the
gramstain, morphology, and aerobicity for every bacterial genus
known to the system. Consider, then, the task of inferring an
organism’s gram stain, morphology, and aerobicity if its identity is
known with certainty. Without the knowledge table, MYCIN would
require several rules of the form:

IF: THE IDENTITY OF THE ORGANISM IS DEFINITELY W
THEN: 1) ITISDEFINITE (1) THAT THE GRAMSTAIN OF THE
ORGANISM IS X, AND
2) IT IS DEFINITE (1) THAT THE MORPHOLOGY OF THE
ORGANISM IS Y, AND
3) ITIS DEFINITE (1) THAT THE AEROBICITY OF THE
ORGANISM IS Z

Instead MYCIN contains a single rule of the following form:

RULEO30

IF: THE IDENTITY OF THE ORGANISM IS KNOWN WITH
CERTAINTY
THEN: IT ISDEFINITE (1) THAT THESE PARAMETERS - GRAM
- MORPH AIR - SHOULD BE TRANSFERRED FROM THE
IDENTITY OF THE ORGANISM TO THIS ORGANISM

Thus if ORGANISM-1 is known to be a streptococcus, MYCIN can
use RULEO30 to access the knowledge table to look up the orga-
nism’s gramstain, morphology, and aerobicity.

109

MYCIN
3.2.6-2 Specialized Functions

The efficient use of knowledge tables requires the existence of
four specialized functions (the category <special-func> from $
3.2.1-2). As explained below, each function attempts to add mem-
bers to a list named GRIDVAL and returns T if at least one element
has been found to be placed in GRIDVAL.

Functions of the class <special-func>:

Let V=Val[C,P] be the set of all hypotheses regarding the value of the clinical
parameter P for the context C.

Let CLST be a list of objects which may be characterized by clinical parameters.

Let PLST be a list of clinical parameters.

Then:

FUNCTION Value of GRIDVAL

SAME2[C,CLST,PLST] {X | X eCLST & (forall Pin PLST)

SAME [C,P,Val [X,P]]}
NOTSAME2[C,CLST,PLST] {X|X eCLST& (for at least one P in PLST)

NOTSAMEIC,P,Val [X,P]1}
SAME3[C P,CLST,P*] {X|XeCLST& SAME[CP,Val[X,P*11}
NOTSAME3[C,P,CLSTP*] {X|XeCLST& NOTSAME[C,P,Val[X,P*]1}
GRID [<object>, <attribute>] {X | X is a value of the <attribute>

of <object>}

GRID is merely a function for looking up information in the special-
ized knowledge table.

The use of these functions is best explained by example. Consider
the following verbalization of a rule given us by one of our col-
laborating experts:

If you know the portal of entry of the current organism and also know the
pathogenic bacteria normally associated with that site, you have evidence that
the current organism is one of those pathogens so long as there is no disagree-
ment on the basis of gramstain, morphology, or aerobicity.

This horrendous sounding rule is coded quite easily using
SAME2[C,CLST,PLST], where C is the current organism, CLST is
the list of pathogenic bacteria normally associated with the portal of

110

Consultation System

entry of C, and PLST is the set of properties (GRAM MORPH AIR).
GRID is used to set up CLST. The LISP version of the rule is:

RULEO84

PREMISE: (SAND (GRID (VAL CNTXT PORTAL) PATH-FLORA)
(SAME 2 CNTXT GRIDVAL
(QUOTE (GRAM MORPH AIR))))
ACTION: (CONCLIST CNTXT IDENT GRIDVAL .8)

Note that GRID sets up the initial value of GRIDVAL for use by
SAME2, which then redefines GRIDVAL for use in the ACTION
clause. This rule is translated (in somewhat stilted English) as fol-
lows:

RULEOQ84

IF: 1) THE LIST OF LIKELY PATHOGENS ASSOCIATED WITH
THE PORTAL OF ENTRY OF THE ORGANISM IS KNOWN,
AND
2) THIS CURRENT ORGANISM AND THE MEMBERS YOU
ARE CONSIDERING AGREE WITH RESPECT TO THE
FOLLOWING PROPERTIES: GRAM MORPH AIR

THEN: THERE 1S STRONGLY SUGGESTIVE EVIDENCE (.8) THAT
EACH OF THEM IS THE IDENTITY OF THIS CURRENT
ORGANISM

SAME2 and NOTSAME2 can also be used for comparing the values
of the same clinical parameters for two or more different contexts in
the context tree. For example:

SAME2[ORGANISM-1 (ORGANISM-2 ORGANISM-3) (GRAM MORPH)]

On the other hand, SAME3 and NOTSAME3 are useful for com-
paring different parameters of two or more contexts. Suppose you
need a predicate that returns T if the site of a prior organism
(ORGANISM-2) is the same as the portal of entry of the current
organism (ORGANISM-1). This is accomplished by:

SAME3[ORGANISM-1 PORTAL (ORGANISM-2) SITE]
111

MYCIN
3.2.7 (*) TRANSLATION OF RULES INTO ENGLISH

Rules are translated into a subset of English using a set of recursive
functions that piece together bits of text. I shall demonstrate the
process using the PREMISE condition (GRID (VAL CNTXT POR-
TAL) PATH-FLORA) that is taken from RULE084 as discussed in §
3.2.6-2.

The reader will recall that every clinical parameter has a property
named TRANS that is used for translation (§ 3.2.4-2). In addition,
every function, simple list, or knowledge table that is used by
MYCIN’s rules also has a TRANS property. For our example the
following TRANS properties are relevant:

GRID: (THE (2) ASSOCIATED WITH (1) IS KNOWN)
VAL: (2 n
PORTAL: (THE PORTAL OF ENTRY OF *)

PATH-FLORA: (LIST OF LIKELY PATHOGENS)

The numbers in the translations of functions indicate where the
translation of the corresponding argument should be inserted. Thus
the translation of GRID’s second argument is inserted for the “(2)”
in GRID’s TRANS property. The extra parentheses in the TRANS
for VAL indicate that the translation of VAL’s first argument should
be substituted for the asterisk in the translation of VAL’s second
argument. Since PORTAL is a PROP-ORG, CNTXT translates as
THE ORGANISM and the translation of (VAL CNTXT PORTAL)
becomes:

THE PORTAL OF ENTRY OF THE ORGANISM

Substituting VAL’s translation for the (1) in GRID’s TRANS, and
PATH-FLORA'’s translation for the (2), the final translation of the
conditional clause becomes:

THE LIST OF LIKELY PATHOGENS ASSOCIATED WITH THE PORTAL
OF ENTRY OF THE ORGANISM IS KNOWN

Similarly,
(GRID (VAL CNTXT CLASS) CLASSMEMBERS)

112

Consultation System
translates as:

THE LIST OF MEMBERS ASSOCIATED WITH THE CLASS OF THE
ORGANISM IS KNOWN

All other portions of rules use essentially this same procedure for
translation. An additional complexity arises, however, if it is neces-
sary to negate the verbs in ACTION or ELSE clauses when the
associated CF is negative. The translator program must therefore
recognize verbs and know how to negate them when evidence in a
PREMISE supports the negation of the hypothesis that is referenced
in the ACTION of the rule.

3.3 Use of Rules to Give Advice

The discussion in § 3.2 was limited to the various data structures
used to represent MYCIN’s knowledge. The present section proceeds
to an explanation of how MYCIN uses that knowledge in order to
give advice.

The discussion begins with a summary of previous goal-oriented or
rule-based problem-solving systems. I then describe MYCIN’s control
structure for selecting rules and deciding when to ask questions of
the user. Subsequent sections explain the mechanisms for creation of
the program’s record of the consultation. They also describe a variety
of nontrivial complexities that arose during implementation of the
system’s control structure.

3.3.1 PREVIOUS GOAL-ORIENTED
PROBLEM-SOLVING SYSTEMS

Early Al research on machine reasoning concentrated on programs
that could solve simple puzzles. From this work a number of
problem-solving techniques were developed, many of which continue
to pervade Al investigation. These have been summarized as follows
[Nilsson, 1974] :

(1) heuristic search
(2) problem spaces and states

113

MYCIN

(3) operators for state transformations
(4) goal and subgoal states

(5) means-ends analysis

(6) reasoning backwards

I will not attempt to discuss all of these here, but will concentrate
instead on the techniques used by the four “rule-based” systems that
were selected for discussion in § 3.2.1-1 and on the various meth-
odologies for goal-oriented problem-solving.

Although MYCIN shares its rule-based knowledge representation
with several other Al programs, none of the systems described in §
3.2.1-1 uses its rules in the way that MYCIN does. Waterman’s
system, for example, makes decisions by comparing the current state
vector with the “situation” portion of the SA rules [Waterman,
1970]. The rules are maintained in an ordered list and the matching-
search begins with the first rule in the list. Searching stops as soon as
a match is found; thus the first matched rule defines the program’s
“move” in the poker game. Subsequent rules in the list that might
also match the current state vector are ignored. As a result, the order
of rules in the rule-list is of crucial importance. In general, the most
specific rules are placed early in the list so that they effectively filter
out state vectors that are well-characterized and for which well-
defined heuristics exist.

Although system knowledge is kept modular by the SA rule
approach, the rules are implicitly interrelated by their ordering in the
list. Furthermore, in HEURISTIC DENDRAL [Buchanan, 1969],
the interrelationships may be explicit in that the action portion of
one rule may include a pointer to one or more other rules. As a
result, integration of new rules and modifications to old knowledge
may be complicated. Waterman’s program attempts to learn new
heuristics for incorporation into the ordered list of rules, and META-
DENDRAL [Buchanan, 19721, also tackles the problem of generali-
zation (theory formation). Both programs must therefore select the
appropriate location or mechanism for incorporating a new rule and,
in some cases, must modify other rules so that the new SA heuristic
will be invoked under appropriate circumstances.

Colby’s system [Colby, 1969] interrelates its rules in a directed
graph [Tesler, 1968]. In judging the credibility of a proposition P,
the program looks for relevant beliefs in the graph structure. A

114

Consultation System

directly relevant belief is one that can be derived from P in a single
step. These beliefs then serve as the “heads” of paths in the graph to
be searched. Therefore, Colby’s system clearly depends upon explicit
interrelationships of both inferential rules and “facts” (see §
3.2.1-1). Furthermore, the program uses the rules primarily as a kind
of pattern matching mechanism during the evaluation of the proposi-
tion in question. Despite its use of rules, the program is not really a
problem-solving system and its similarity to MYCIN is therefore
largely superficial.

Green’s QA3, on the other hand, is a problem-solving system with
a theoretical foundation firmly linked to the puzzle-solving programs
that I mentioned above [Nilsson, 1974]. As explained in § 3.2.1-1,
QA3’s task is to use axioms and theorems (expressed in the first-
order predicate calculus) to answer questions [Green, 1969]. Ques-
tions are themselves expressed as theorems (rules) and the program
attempts to derive the theorem from its knowledge-base. The steps in
the proof are remembered and then form the basis of the answer to
the question. Thus the question (expressed as a theorem) is a “goal-
statement” and the program must have mechanisms for selecting
relevant pieces of knowledge that can be combined to accomplish the
goal.

QA3’s technique for combining knowledge is a modified form of
the resolution principle [Robinson, 1965]. The principle explains
how to derive a new logical statement, when possible, from a speci-
fied pair of clauses. However, a variety of additional strategies is
needed for deciding which pieces of knowledge to attempt to resolve.
Green’s technique is to try to show that the negation of the question
is inconsistent with the rest of the system’ knowledge. Aided by
heuristic search strategies including the set-of-support [Wos, 1965],
unit preference [Wos, 1964] and subsumption [Robinson, 19651,
QA3 works backwards from the negation of the question, attempting
to derive a contradiction. Thus, this theorem-proving approach may
be considered goal-oriented in that it works backwards from its goal
rather than resolving knowledge clauses at random in hopes of
eventually deriving the answer to the question under consideration.

Another intuitively pleasing technique that has found application
within the realm of problem-solving [Fikes, 1971; Newell, 1961] is
known as means—ends analysis. Often explained in terms of state
transition, the technique is based upon the recognition of differences

115

MYCIN

between the current state of the system and the desired state (goal).
As a result, useful intermediate states (subgoals) can be defined so
that the problem may be reduced to a number of subproblems, each
much easier than the total task. Plans for accomplishing each subgoal
may then be combined to create a total strategy for achieving the goal.
It is not always natural to express knowledge in terms of operators
for state transition, however. As early as 1957, a system was intro-
duced to solve logical problems by working backwards from the goal
without means—ends analysis [Newell, 1957]. More recent systems
have also utilized the goal-oriented approach [Hewitt, 1969; Rulif-
son, 1972]. In fact, the consequent theorems of PLANNER [Hewitt,
19721 (implemented in MICRO-PLANNER; see also § 3.2.1-1),
provide a control mechanism for knowledge use which seems strik-
ingly similar to those that should ideally be used for medical decision
making. I will attempt to justify this claim after a brief description of
PLANNER’s deductive mechanisms. The examples used here are
taken from a recent discussion of Al languages [Bobrow, 1973].
PLANNER’s data types include assertions, goals, and theorems.
Consider, for example, a program that knew the following facts:

(PART ARM PERSON)
(PART HAND ARM)
(PART FINGER HAND)

where these stand for attribute-object-value triples such as those I
discussed in § 3.2.3-1. Suppose the program were now asked to
decide whether a finger is part of a person, i.e.:

(GOAL (PART FINGER PERSON))

The PLANNER “GOAL” formalism first looks to see if the fact
appears in the program’s knowledge-base. Since it does not, it looks
instead for a “consequent theorem’ with a pattern that matches the
GOAL statement (PART FINGER PERSON). Variable positions in
patterns are characters preceded by ‘$?’. Thus the following conse-
quent theorem matches the GOAL:

(CONSEQUENT
(PART $?X $22) <(pattern)
(GOAL (PART $?X $?Y))
(GOAL (PART $?Y $22)))

116

Consultation System

GOAL TREE FOR THE PLANNER EXAMPLE

(PART FINGER PERSON)

st USE
<— OF THE —
CONSEQUENT THEOREM

(PART FINGER $?Y) (PART $?Y PERSON)
l $?Y <— HAND 1 $?Y =— HAND
(PART FINGER HAND) (PART HAND PERSON)

2nd USE
<— OF THE —
CONSEQUENT THEOREM

(PART HAND $?Y) (PART $?Y PERSON)
l$?Y<—ARM l$?Y ~<— ARM
(PART HAND ARM) (PART ARM PERSON)

Figure 3-6: This goal tree corresponds to the example of PLANNER reasoning strategies
described in the text. The terms $?Y and $?Z correspond to variable positions in the
PLANNER patterns.

When instantiated for the current GOAL, the theorem becomes:

(CONSEQUENT
(PART FINGER PERSON)
(GOAL (PART FINGER $?Y))
(GOAL (PART $?Y PERSON)))

or, in words, to show that a finger is part of a person, find something
($?Y) of which a finger is a part and which itself is a part of a person.
Thus the program has two new instantiated GOAL statements:

(GOAL (PART FINGER $?Y))
(GOAL (PART $?Y PERSON}))

117

MYCIN

The first GOAL statement immediately finds from its knowledge
base that (PART FINGER $?Y) holds for $?Y = HAND. Thus the
second GOAL becomes (GOAL (PART HAND PERSON)); this can,
in turn, be derived by recursive use of the consequent theorem given
above. Figure 3-6 diagrams the reasoning network that develops
below the initial GOAL. Note that the terminal nodes in this little
tree correspond to facts already in the data base. As is later shown,
MYCIN’s decision process may also be diagrammed as a reasoning
network with a goal at the top and known data as terminal nodes.

Another PLANNER construct is the “antecedent theorem.” When-
ever anything is asserted in a PLANNER program, i.e., added to the
data base, the system compares the new knowledge with the pattern
portion of all antecedent theorems in the system. Continuing the
example from above, consider the following theorem:

(ANTECEDENT
(PART $2X $?Y) <«(pattern)
(GOAL (PART $?Y $22))
(ASSERT (PART $?X $?7)))

Suppose the assertion (PART FINGER HAND) were now added to a
program that already knew (PART HAND ARM) and (PART ARM
PERSON). The new assertion would match the pattern in the theo-
rem above (note I have not yet mentioned any GOALs) and would
therefore invoke the following instantiation:

(ANTECEDENT
(PART FINGER HAND)
(GOAL (PART HAND $7Z))
(ASSERT (PART FINGER $?2)))

which says, in words, that since a finger is part of a hand, if you can
find something ($?Z) which a hand is part of then you can assert that
a finger is part of it too. (GOAL (PART HAND $?2)) is in this case
easily proven from the data base by setting $?Z to ARM. Thus the
antecedent theorem succeeds and asserts (PART FINGER ARM).
However, this new assertion also matches the pattern portion of the
antecedent theorem, so the theorem is once again invoked. This time
the observation (PART ARM PERSON) leads to the conclusion
(PART FINGER PERSON).

118

Consultation System

A potential problem with antecedent theorems, as should be clear
from this example, is that they have a capability to clutter up the
system’s knowledge-base with facts (assertions) that will never be
used in achieving goals. When used judiciously they are powerful
mechanisms for simplifying future goals that are likely to need the
generated assertions, but the consequent theorems suggest a sense of
purpose which is highly appealing for problem-solving applications.

The distinction between consequent and antecedent theorems
provides a useful basis for considering some of the different ap-
proaches to the medical diagnosis problem. Antecedent theorems
may in one sense be compared with a comprehensive process for
medical data collection. Clinical screening exams, of course, have
their place (§ 1.2.2-3), but medical education tends to stress the
rational selection of tests based upon indications in the patient. The
alternate approach is to order every test imaginable (including a
lengthy history and physical exam) and then to sift through the data
in hopes of recognizing unusual patterns or clusters of symptoms
that may lead to a diagnosis. The second alternative is not only
expensive and time-consuming, but it also requires remarkably little
analytical skill on the part of the clinician. The approach does occur,
however, particularly among medical students before their clinical
skills are well-developed.

The selection of tests on the basis of specific indications, on the
other hand, indicates an organized approach to problem-solving that
parallels that found in consequent theorems. The good clinician
tends to work backwards from his goal (i.e., to diagnose and treat his
patient appropriately), making hypotheses and selecting tests in
accordance with his desire to minimize unnecessary time-delays or
monetary expenditures. This comparison to PLANNER-type conse-
quent theorems may at first seem rather vague, but I shall show in
subsequent sections that MYCIN indeed does reason backwards,
avoiding the “shotgun approach” of a diagnostic system based solely
upon mechanisms analogous to antecedent theorems.

3.3.2 MYCIN’S CONTROL STRUCTURE

MYCIN’s rules are directly analogous to the PLANNER conse-
quent theorems discussed in § 3.3.1. They permit a reasoning chain
(see Figure 3-6) to grow dynamically on the basis of the user’s

119

MYCIN

answers to questions regarding the patient. In this subsection, I
describe that reasoning network, explaining how it grows and how
MYCIN manages to ask questions only when there is a reason for
doing so.

3.3.2-1 Consequent Rules and Recursion

As discussed in § 1.4.1, MYCIN’s task involves a four-stage deci-
sion problem:

(1) Decide which organisms, if any, are causing significant disease;
(2) Determine the likely identity of the significant organisms;

(3) Decide which drugs are potentially useful;

(4) Select the best drug or drugs.

Steps 1 and 2 are closely interrelated since determination of an
organism’s significance may well depend upon its presumed identity.
Furthermore, MYCIN must consider the possibility that the patient
has an infection with an organism not specifically mentioned by the
user (e.g., an occult abscess suggested by historical information or
subtle physical findings). Finally, if MYCIN decides that there is no
significant infection requiring antimicrobial therapy, it should skip
steps 3 and 4, advising the user that no treatment is thought to be
necessary. MYCIN’s task area therefore can be defined by the follow-
ing rule:

RULEQ92

IF: 1) THERE 1S AN ORGANISM WHICH REQUIRES
THERAPY, AND
2) CONSIDERATION HAS BEEN GIVEN TO THE
POSSIBLE EXISTENCE OF ADDITIONAL ORGANISMS
REQUIRING THERAPY, EVEN THOUGH THEY HAVE
NOT ACTUALLY BEEN RECOVERED FROM ANY
CURRENT CULTURES

THEN: DO THE FOLLOWING:
1) COMPILE THE LIST OF POSSIBLE THERAPIES WHICH,
BASED UPON SENSITIVITY DATA, MAY BE EFFECTIVE
AGAINST THE ORGANISMS REQUIRING TREATMENT,
AND

120

Consultation System

2) DETERMINE THE BEST THERAPY
RECOMMENDATIONS FROM THE COMPILED LIST

OTHERWISE: INDICATE THAT THE PATIENT DOES NOT REQUIRE
THERAPY

This rule is one of MYCIN’s PATRULES (i.e., its context is the
patient; see § 3.2.2-2) and is known as the ‘‘goal rule” for the
system. A consultation session with MYCIN results from a simple
two-step procedure (Subprogram 1 shown in Figure 1-1):

(1) Create the patient context as the top node in the context tree
(see § 3.4 for an explanation of how nodes are added to the
tree)

(2) Attempt to apply the goal-rule to the newly created patient
context

After the second step, the consultation is over and Subprogram 1
relinquishes control to the Explanation System (Subprogram 2
shown in Figure 1-1). My purpose here, then, is to explain how the
simple attempt to apply the goal rule to the patient causes a lengthy
consultation with an individualized reasoning chain.

When MYCIN first tries to evaluate the PREMISE of the goal rule,
the first condition requires that it know whether there is an organism
that requires therapy. MYCIN then reasons backwards in a manner
that may be informally paraphrased as follows:

How do I decide whether there is an organism requiring therapy? Well,
RULEOQ90 tells me that organisms associated with significant disease require
therapy. But I don’t even have any organisms in the context tree yet, so I'd
better ask first if there are any organisms and if there are I'll try to apply
RULEO9O to each of them. However, the PREMISE of RULEOQ9O requires that I
know whether the organism is significant. I have a bunch or rules for making this
decision (RULE038 RULE042 RULE044 RULE108 RULE122). For example,
RULEO38 tells me that if the organism came from a sterile site it is probably
significant. Unfortunately I don’t have any rules for inferring the site of a
culture, however, so I guess I'll have to ask the user for this information when I
needit...

This goal-oriented approach to rule invocation and question selection
is automated via two interrelated procedures, a MONITOR that

121

MYCIN

THE MONITOR FOR RULES

CONSIDER THE
FIRST CONDITION
IN THE PREMISE

OF THE RULE

ALL NECESSARY
INFORMATION BEEN
GATHERED TO DECIDE
IF THE CONDITION

CONSIDER THE
NEXT CONDITION
IN THE PREMISE

GATHER THE
NECESSARY
INFORMATION
USING THE F/INDOUT
MECHANISM

ARE THERE

IS
THE CONDITION
TRUE?

TO CHECK?

! no (or unknown)

ADD THE
CONCLUSION OF
REJECT THE RULE TO THE
THE ONGOING RECORD
RULE OF THE CURRENT
CONSULTATION

Figure 3-7: Flow chart describing the rule MONITOR that analyzes a rule and decides
whether it applies in the clinical situation under consideration. Each condition in the
PREMISE of the rule references some clinical parameter, and all such conditions must be
true for the rule to be accepted. [Reproduced from Computers and Biomedical Research
[Shortliffe, 1975b] with permission of the publishers.]

122

Consultation System

analyzes rules and a FINDOUT mechanism that searches for data
needed by the MONITOR.

The MONITOR analyzes the PREMISE of a rule, condition by
condition, as shown in Figure 3-7. (As discussed in § 3.2.5, the
MONITOR uses the $AND function to oversee the PREMISE evalua-
tion.) When the value of the clinical parameter referenced in a
condition is not yet known to MYCIN, the FINDOUT mechanism is

THE FINDOUT MECHANISM

IS THE
PARAMETER
A PIECE OF
LABORATORY
DATA?

yes

RETRIEVE Y = LIST OF RULES ASK USER FOR THE VALUE
WHICH MAY AID IN DEDUCING OF THE PARAMETER
THE VALUE OF THE PARAMETER

APPLY MONITOR TO EACH RULE
IN THE LIST Y

IS
VALUE OF
THE PARAMETER
KNOWN?

yes

IS
VALUE OF
THE PARAMETER
KNOWN?

RETRIEVE Y = LIST OF RULES
WHICH MAY AID IN DEDUCING
THE VALUE OF THE PARAMETER

v

ASK USER FOR THE VALUE APPLY MONITOR TO EACH RULE
OF THE PARAMETER IN THE LIST Y

Figure 3-8: Flow chart describing the strategy for determining which questions to ask the
physician. The derivation of values of parameters may require recursive calls to the
MONITOR, thus dynamically creating a reasoning chain specific to the patient under
consideration. [Reproduced from Computers and Biomedical Research [Shortliffe, 1975b]
with permission of the publishers.]

123

MYCIN

invoked in an attempt to obtain the missing information. FINDOUT
then either derives the necessary information (from other rules) or
asks the user for the data.

FINDOUT has a dual strategy depending upon the kind of infor-
mation required by the MONITOR. This distinction is demonstrated
in Figure 3-8. In general, a piece of data is immediately requested
from the user (an ASK1 question) if it is considered in some sense
“primitive,” as are, for example, most laboratory data. Thus, if the
physician knows the identity of an organism (e.g., from a lab report),
we would prefer that the system request that information directly
rather than try to deduce it via decision rules. However, if the user
does not know the identity of the organism, MYCIN uses its knowl-
edge base in an effort to deduce the range of likely organisms.

“Nonlaboratory data” are those kinds of information that require
inference even by the clinician: e.g., whether an organism is a
contaminant or a previously administered drug was effective.
FINDOUT always attempts to deduce such information first, asking
the physician only when MYCIN’s knowledge-base of rules is inade-
quate for making the inference from the information at hand (an
ASK2 question).

In § 3.2.3-2 I described the representation of clinical parameters
and their associated properties. The need for two of these properties,
LABDATA and UPDATED-BY, should now be clear. The
LABDATA flag for a parameter allows FINDOUT to decide which
branch to take through its decision process (Figure 3-8). Thus,
IDENT is marked as being LABDATA in Figure 3-2.

Recall that the UPDATED-BY property is a list of all rules in the
system that permit an inference to be made regarding the value of
the indicated parameter. Thus, UPDATED-BY is precisely the list I
have called Y in Figure 3-8. Every time a new rule is added to
MYCIN’s knowledge-base, the name of the rule is added to the
UPDATED-BY property of the clinical parameter referenced in its
ACTION or ELSE clause. Thus, the new rule immediately becomes
available to FINDOUT at times when it may be useful. It is not
necessary explicitly to specify its interrelationships with other rules
in the system.

Note that FINDOUT is accessed from the MONITOR, but the
MONITOR may also be accessed from FINDOUT. This recursion
allows self-propagation of a reasoning network appropriate for the

124

Consultation System

patient under consideration and selects only the necessary questions
and rules. The first rule passed to the MONITOR is always the goal
rule. Since the first condition in the PREMISE of this rule references
a clinical parameter of the patient named TREATFOR, and since the
value of TREATFOR is, of course, unknown before any data have
been gathered, the MONITOR asks FINDOUT to trace the value of
TREATFOR. This clinical parameter is not a LABDATA so
FINDOUT takes the left-hand pathway in Figure 3-8 and sets Y to
the UPDATED-BY property of TREATFOR, the two-element list
(RULEO90 RULE149). The MONITOR is then called again with
RULEOQ90 as the rule for consideration, and FINDOUT is utilized to
trace the values of clinical parameters referenced in the PREMISE of
RULEQ90. Note that this process parallels the verbal description of
MYCIN’s reasoning that was given above. (The reference to tree
propagation, however, will not be explained until § 3.4.)

It is important to recognize that FINDOUT does not check to see
whether the PREMISE condition is true. Instead the FINDOUT
mechanism traces the clinical parameter exhaustively and returns its
value to the MONITOR where the conditional expression may then
be evaluated. (The process is slightly different for “multivalued”
parameters; see § 3.3.2-2.) Hence FINDOUT is called at most one
time for a clinical parameter (in a given context, see § 3.4). When
FINDOUT returns a value to the MONITOR it marks the clinical
parameter as having been traced. Thus, when the MONITOR reaches
the question “HAS ALL NECESSARY INFORMATION BEEN
GATHERED TO DECIDE IF THE CONDITION IS TRUE?” (Figure
3-7), the parameter is immediately passed to FINDOUT unless it has
been previously marked as traced.

Figure 3-9 is a portion of MYCIN’s initial reasoning chain. A
comparison with Figure 3-6 will reemphasize the similarities between
MYCIN’s control structure and the goal-oriented consequent theo-
rems used by PLANNER. In Figure 3-9 the clinical parameters being
traced are underlined. Thus REGIMEN is the top goal of the system
(i.e., it is the clinical parameter in the ACTION clause of the goal
rule). Below each parameter are the rules (from the UPDATED-BY
property) which may be used for inferring the parameter’s value.
Clinical parameters referenced in the PREMISE of these rules are
then listed at the next level in the reasoning network. Rules with
multiple PREMISE conditions have their links numbered in accor-

125

MYCIN

"SUOIIIPUO0D JSINT Hd Y UMM 10}surered [EOTUIO PoJRIOOSSE
a1 Jo uonsod sy £3109ds 0} pepnIoUT Ueaq SBY ISQUINU B ‘IS|NIHd IOy} Ul SUORIPUOd o[dUInuI oABY SO[NI USYM ‘POUIIOpUN 9I7 SIS}oUL
-ered TeOLUT[o JO soWIeN ‘SWSIUEYOSW INOANIH PUE HOLINOW U Aq pajeIousd yIomiou SUIUOSESI JO pury oy Jo o[duEexs uy :6-¢ omsig

I D O D DD ® DD

3dAlans 1n3al EIT 1n3al LS TYWHONEY 3LIS ls TYWNHONEY 3LIS aLls
{ N/_ /—N_ £ Z 1
(003104 9003104 L1310y 190310y @
| ! |
eoe 3l1is
|
SOJWAN STNIWAN 3LIS ANVNIAYLNOD SOdWNNN STINOWAN 3LIS WNNDIS 1331103 3LIS 3LIs
£ z] I £ z] £ z 1 |
zz13ny 801310y p031NY 203Ny 8£031NY
L | | I I
by ° . 3INYIIHINDIS
® [®
3714834 J071934NI IN3aI
]—\—
TERGE 0603104
. | |
. i
HO4HIA0D Y041v3ayL
26031NY
— MHOMLIN ONINOSYIH IT1dINVS

N3IWI93Y

126

Consultation System

dance with the order in which the parameters are traced (by
FINDOUT). ASK1 indicates that a parameter is LABDATA so its
value is automatically asked of the user when it is needed. ASK2
refers to parameters that are not LABDATA but for which no
inference rules currently exist, e.g., whether the dose of a drug is
adequate. One of the goals in the future development of MYCIN’s
knowledge base is to acquire enough rules allowing the values of
non-LABDATA parameters to be inferred so that ASK2 questions
need no longer occur. .

Note that the reasoning network in Figure 3-9 is drawn to reflect
maximum size. In reality many portions of such a network need not
be considered. For example, RULEQ42 (one of the UPDATED-BY
rules under SIGNIFICANCE) is rejected if the SITE condition is
found to be false by the MONITOR. When that happens, neither
COLLECT nor SIGNUM need to be traced by FINDOUT and those
portions of the reasoning network are not created. Thus, the order of
conditions within a PREMISE is highly important. In general, condi-
tions referencing the parameters that are most common (i.e., which
appear in the PREMISE of the most rules) are put first in the
PREMISE of new rules to act as an effective screening mechanism.

A final comment is necessary regarding the box labelled “REJECT
THE RULE" in Figure 3-7. This step in the MONITOR actually must
check to see if the rule has an ELSE clause. If so, and if the
PREMISE is known to be false, the conclusion indicated by the
ELSE clause is drawn. If there is no ELSE clause, or if the truth
status of the PREMISE is uncertain (e.g., the user has entered
UNKNOWN when asked the value of one of the relevant parameters,
see § 3.3.2-2), the rule is simply ignored.

3.3.2-2 Asking Questions of User

As was emphasized in Chapter 2, the conventions for communica-
tion between a program and the physician are a primary factor
determining the system’s acceptability. We have therefore designed a
number of features intended to simplify the interactive process that
occurs when FINDOUT reaches one of the boxes entitled “ASK THE
USER FOR THE VALUE OF THE PARAMETER” (Figure 3-8).

When MYCIN requests the value of a “single-valued” or “yes—no”
parameter, it uses the PROMPT property as described in § 3.2.3-2.

127

MYCIN

The user’s response is then compared with the EXPECT property of
the parameter. If his answer is one of the expected responses, the
program simply continues through the reasoning network. Otherwise,
MYCIN checks the system dictionary to see if the user’s response is a
synonym for one of the recognized answets. If this attempt also fails,
MYCIN uses INTERLISP spelling-correction routines [Teitelman,
1974] to see if a simple spelling or typographical error will account
for the unrecognized response. If so, the program makes the correc-
tion, prints its assumption, and proceeds as though the user had
made no error. If none of these mechanisms succeeds, MYCIN tells
the user that his response is not recognized, displays a list of sample
responses, and asks the question again. Examples of these features
are included in the sample consultation session at the end of Chapter
1.

“Multivalued” parameters are handled somewhat differently.
FINDOUT recursively traces such parameters in the normal fashion,
but when forced to ask a question of the user it customizes its
question to the condition being evaluated in the MONITOR. Sup-
pose, for example, the MONITOR were evaluating the condition
(SAME CNTXT INFECT MENINGITIS), i.e., “Meningitis is an infec-
tious disease diagnosis for the patient.” If FINDOUT were to ask the
question using the regular PROMPT strategy, it would request:

“What is the infectious disease diagnosis for PATIENT-12"

The problem is that the patient may have several diagnoses, each of
which can be expressed in a variety of ways. If the physician were to
respond:

A meningeal inflammation that is probably of infectious origin®’

MYCIN would be forced to try to recognize that this answer implies
meningitis. Our solution has been to customize questions for “multi-
valued” parameters to reflect the value being checked in the current
PREMISE condition. The PROMPT1 property is used, and questions
always expect a yes—or—no response:

““Is there evidence that the patient has a meningitis?"’

128

Consultation System

The advantages of this approach are the resulting ability to avoid
natural language processing during the consultation itself, and the
posing of questions that are specific to the patient under considera-

tion.

In addition to the automatic spelling-correction capability de-
scribed above, the user is given a number of options that may be
utilized whenever MYCIN asks him a question:

UNKNOWN

?
7?
RULE

QA

WHY

CHANGE XXX

STOP
HELP

1

(may be abbreviated U or UNK) used to indicate that
the physician does not know the answer to the question,
usually because the data are unavailable.

used to request a list of sample recognized responses.
used to request a list of all recognized responses.

used to request that MYCIN display the translation of
the current decision rule. FINDOUT simply translates
the rule being considered by the MONITOR. This
feature provides a simple capability for explaining why
the program is asking the question. However, it cannot
explain motivation beyond the current decision rule.
used to digress temporarily in order to use the
Explanation System (Subprogram 2). The features of
this system are explained in Chapter 5.

used to request a detailed explanation of the question
being asked. This feature is much more conversational
that the RULE option above and permits investigation
of the current state of the entire reasoning chain. This
explanation capability is described elsewhere [Shortliffe,
1975b; Davis, 1976] .

used to change the answer to a previous question.
Whenever MYCIN asks a question it prints a number in
front of the prompt. Thus CHANGE 4 means “Go back
and let me reanswer question #4”. The complexities
involved in this process are discussed in § 3.6.1.

halts the program without completing the consultation.
prints this list.

3.3.3 CREATION OF DYNAMIC DATA BASE

Figure 1-1 showed that the Consultation System maintains an
ongoing record of the consultation. These dynamic data include

129

MYCIN

information entered by the user, inferences drawn using decision
rules, and record-keeping data structures that facilitate question
answering by the Explanation System (see Chapter 5).

3.3.3-1 Data Acquired from User

Except for questions related to propagation of the context tree, all
queries from MYCIN to the physician request the values of specific
clinical parameters for specific nodes in the context tree. The
FINDOUT mechanism screens the user’s response, as described in §
3.3.2-2, stores it in MYCIN’s dynamic data base, and returns the
value to the MONITOR for evaluation of the conditional statement
that generated the question in the first place (§ 3.3.2-1). The physi-
cian’s response is stored, of course, so that future rules containing
conditions referencing the same clinical parameter will not force the
question to be asked a second time.

As we noted in § 3.2.4, however, the values of clinical parameters
are always stored along with their associated certainty factors. A
physician’s response must therefore have a CF associated with it.
MYCIN’s convention is to assume CF=1 for the response unless the
physician explicitly states otherwise. Thus the following exchange:

7) Staining characteristics of ORGANISM-1 (gram):
**GRAMNEG

results in:
Val[ORGANISM-1,GRAM] = ((GRAMNEG 1.0))

If, on the other hand, the user thinks he knows the answer to a
question but wants to indicate his uncertainty, he may enter a
certainty factor in parentheses after his response. MYCIN expects the
number to be an integer between —10 and +10; the program divides
the number by 10 to obtain a CF. Using integers simplifies the user’s
response and also discourages comparisons between the number and
a probability measure. Thus the following exchange:

8) Enter the identity (genus) of ORGANISM-1:
**ENTEROCOCCUS (8)

130

Consultation System

results in
Val[ORGANISM-1,IDENT] = ((STREPTOCOCCUS-GROUP-D .8))

This example also shows how the dictionary is used to put synonyms
into standardized form for the patient’s data base (i.e., enterococcus
is effectively another name for a group-D streptococcus).

A variant of this last example is the user’s option to enter multiple
responses to a question so long as each is modified by a CF. For
example:

13) Did ORGANISM-2 grow in clumps, chains, or pairs?
**CLUMPS (6) CHAINS (3) PAIRS (-8)

results in
Val[ORGANISM-2,CONFORM] = ((CLUMPS .6) (CHAINS .3) (PAIRS -.8))

The CF’s associated with the parameter values are then used for
evaluation of PREMISE conditions as described in § 3.2.5. Note that
the user’s freedom to modify his answers increases the flexibility of
MYCIN’s reasoning. Without the CF option, the user might well have
responded UNKNOWN to question 13 above. The demonstrated
answer, although uncertain, gives MYCIN much more information
than would have been provided by an UNKNOWN.

3.3.3-2 Data Inferred by System

This subsection explains the <conclusion> item from the BNF
rule description (§ 3.2.1-2), ie., the functions that are used in
ACTION or ELSE clauses when a PREMISE has shown that an
indicated conclusion may be drawn. There are only three such
functions, two of which (CONCLIST and TRANSLIST) reference
knowledge tables (§ 3.2.6) but are otherwise dependent upon the
third, a function called CONCLUDE. CONCLUDE takes five argu-
ments:

CNTXT - the node in the context tree about which the conclusion is being
made

PARAM - the clinical parameter whose value is being added to the dynamic
data base ,

131

MYCIN

VALUE - the inferred value of the clinical parameter

TALLY - the certainty tally for the PREMISE of the rule (see § 3.2.4)

CF - the certainty factor for the rule as judged by the expert from,
whom the rule was obtained

The translation of CONCLUDE depends upon the size of CF:

CF> .8 - “There is strongly suggestive evidence that . ..”
4<CF<.8 - “There is suggestive evidence that . ..”
CF<4 - “There is weakly suggestive evidence that . ..”

Computed CF - “There is evidence that . ..”
Thus the following conclusion:

(CONCLUDE CNTXT IDENT STREPTOCOCCUS TALLY .7)
translates as:

THERE IS SUGGESTIVE EVIDENCE (.7) THAT THE IDENTITY OF THE
ORGANISM IS STREPTOCOCCUS

If, for example, the rule with this ACTION clause were successfully
applied to ORGANISM-1, an organism for which no previous infer-
ences had been made regarding identity, the result would be:

Val[ORGANISM-1,IDENT] = ((STREPTOCOCCUS X))

where X is the product of .7 and TALLY (see Combining Function
4, § 4.6). Thus the strength of the conclusion reflects both the CF
for the rule and the extent to which the PREMISE of the rule is
believed to be true for ORGANISM-1.

Suppose a second rule were now found which contained a
PREMISE true for ORGANISM-1 and which added additional evi-
dence to the assertion that the organism is a streptococcus. This new
evidence somehow has to be combined with the CF (=X) that is
already stored for the hypothesis that ORGANISM-1 is a streptococ-
cus. If Y is the CF calculated for the second rule (i.e., the product of
the TALLY for that rule and the CF assigned to the rule by the
expert), the CF for the hypothesis is updated to Z so that:

132

Consultation System
Val[ORGANISM-1,IDENT] = ((STREPTOCOCCUS 2))

where Combining Function 1 gives Z = X + Y(1-X). This function is
justified and discussed in detail in § 4.6.

Similarly, additional rules leading to alternate hypotheses regard-
ing the identity of ORGANISM-1 may be successfully invoked. The
new hypotheses, along with their associated CF’s, are simply ap-
pended to the list of hypotheses in Val [ORGANISM-1,IDENT].
Note, of course, that the CF’s of some hypotheses may be negative,
indicating there is evidence suggesting that the hypothesis is not true.
When there is both positive and negative evidence for a hypothesis,
Combining Function 1 must be used in a modified form. See Chapter
4 for these details, especially § 4.7 where MYCIN’s use of the CF
model is discussed with an example.

A final point to note is that values of parameters are stored
identically regardless of whether the information has been inferred or
acquired from the user (§ 3.3.3-1). The source of a piece of informa-
tion is maintained in a separate record (§ 3.3.3-3). It is therefore easy
to incorporate new rules that infer values of parameters for which
ASK2 questions to the user once were necessary.

3.3.3-3 Creating an Ongoing Consultation Record

In addition to information provided or inferred regarding nodes in
the context tree, MYCIN’s dynamic data base contains a record of
the consultation session. This record provides the basis for answering
questions about the consultation (Chapter 5).

There are two general types of records kept. One is information
about how values of clinical parameters were obtained. If the value
was inferred using rules, a record of those inferences is stored with
the rules themselves. Thus whenever an ACTION or ELSE clause is
executed, MYCIN keeps a record of the details.

The second record provides a mechanism for explaining why
questions were asked. MYCIN maintains a list of questions, their
identifying number, the clinical parameter and context involved, plus
the rule that led to generation of the question. The program then
uses this list in responding to the EQ option (see Chapter 5) during
interactive sessions between the physician and Subprogram 2.

133

MYCIN
3.3.4 (*) SELF-REFERENCING RULES

As new rules were acquired from the collaborating experts, it
became apparent that MYCIN would need a small number of rules
that departed from the strict modularity to which we had otherwise
been able to adhere. For example, one expert indicated that he
would tend to ask about the typical pseudomonas-type skin lesions
only if he already had reason to believe that the organism was a
pseudomonas. If the lesions were then said to be evident, however,
his belief that the organism was a pseudomonas would be increased
even more. A rule reflecting this fact must somehow imply an
orderedness of rule invocation, i.e., “Don’t try this rule until you
have already traced the identity of the organism by using other rules
in the system”. Our solution has been to reference the clinical para-
meter early in the PREMISE of the rule as well as in the ACTION.
For example:

RULEO40

IF: 1) THE SITE OF THE CULTURE IS BLOOD, AND
2) THE IDENTITY OF THE ORGANISM MAY BE
PSEUDOMONAS, AND
3) THE PATIENT HAS ECTHYMA GANGRENOSUM SKIN
LESIONS

THEN: THERE IS STRONGLY SUGGESTIVE EVIDENCE (.8)
THAT THE IDENTITY OF THE ORGANISM IS
PSEUDOMONAS

Note that RULEO40 is thus a member of both the LOOKAHEAD
property and the UPDATED-BY property for the clinical parameter
IDENT. Rules with the same parameter in both PREMISE and
ACTION are termed ‘‘self-referencing” rules. The ordered invocation
of such rules is accomplished by a generalized procedure described
below.

As discussed in § 3.3.2-1, a rule such as RULEOQ4O0 is originally
invoked because MYCIN is trying to infer the identity of an orga-
nism, i.e., FINDOUT is asked to trace the parameter IDENT and
recursively sends the UPDATED-BY list for that parameter to the
MONITOR. When the MONITOR reaches RULEQ40, however, the
second PREMISE condition references the same clinical parameter

134

Consultation System

currently being traced by FINDOUT. If the MONITOR merely
passed IDENT to FINDOUT again (as called for by the simplified
flow chart in Figure 3-7), FINDOUT would begin tracing IDENT for
a second time, RULEO40 would be passed to the MONITOR yet
again, and an infinite loop would occur.

The solution to this problem is to let FINDOUT screen the list I
call Y in Figure 3-8, i.e., the UPDATED-BY property for the parame-
ter it is about to trace. Y is partitioned by FINDOUT into regular
rules and self-referencing rules (where the latter category is defined
as those rules that also occur on the LOOKAHEAD list for the
clinical parameter). FINDOUT passes the first group of rules to the
MONITOR in the normal fashion. After all these rules have been
tried, FINDOUT marks the parameter as having been traced and then
passes the self-referencing rules to the MONITOR. In this way, when
the MONITOR considers the second condition in the PREMISE of
RULEOQA40, the conditional is evaluated without a call to FINDOUT
because the parameter has already been marked as traced. Thus, the
truth of the PREMISE of a self-referencing rule is determined on the
basis of the set of non-self-referencing rules that were first evaluated.
If one of the regular rules permitted MYCIN to conclude that an
organism might be a pseudomonas, RULE040 might well succeed
when passed to the MONITOR. Clearly this mechanism for handling
self-referencing rules satisfies the intention of an expert when he
gives us decision criteria in self-referencing form.

It should be noted that this approach minimizes the potential for
self-referencing rules to destroy certainty factor commutativity. By
holding these rules to the last we insure that the certainty tally for
their PREMISE (see TALLY, § 3.2.5) is the same regardless of the
order in which the non-self-referencing rules were executed. If there
is more than one self-referencing rule that is successfully executed
for a given context and parameter, however, the order of their
invocation may affect the final CF. The approach we have currently
implemented thus seeks merely to minimize the potential inconsis-
tent effects of self-referencing rules.

3.3.5 (*) PREVENTING REASONING LOOPS

Self-referencing rules are actually a special case of a more general
problem. Reasoning loops involving multiple rules cannot be handled

135

MYCIN

by the mechanism described in § 3.3.4. The difference is that
self-referencing rules are intentional parts of MYCIN’s knowledge
base whereas reasoning loops are artifacts that must somehow be
avoided.

For the following discussion, I introduce the following notation:

[0 X::>Y

means that decision rule “‘q” uses clinical parameter X to reach a
conclusion regarding the value of clinical parameter Y. Thus, a
self-referencing rule may be represented by:

[al E::>E

where E is the clinical parameter that is referenced in both the
PREMISE and the ACTION of the rule. Consider now the following
set of rules:

[11 A::>B
[21 B::>C
[31 C::>D
[4] D::>A

Statement [1], for example, says that under certain unspecified
conditions, the value of A can be used to infer the value of B. Now
suppose that the MONITOR asks FINDOUT to trace the clinical
parameter D. Then MYCIN’s recursive mechanism would create the
following reasoning chain:

[4] (11 [2] [3]
s DA B>Csi>D

The difference between this looped reasoning chain and a self-
referencing rule is that rule [4] was provided as a mechanism for
deducing the value of A, not for reinforcing the system’s belief in the
value of D. In cases where the value of A is of primary interest, the
use of rule [4] would be appropriate. MYCIN solves this problem by
keeping track of all parameters currently being traced by the
FINDOUT mechanism. The MONITOR then simply ignores a rule if
one of the parameters checked in its PREMISE is already being

136

Consultation System

traced. The result, with the value of D as the goal, is a three-
membered reasoning chain in the case above:

[11 21 [3]
A::>B::>C::>D

Rule [4] is rejected because parameter D is already being traced
elsewhere in the current reasoning chain. If the value of A were the
main goal, however, the chain would be:

[2] [3] [4]
B::>C:>D:>A

Note that this simple mechanism allows us to have potential reason-
ing loops in the knowledge-base but to select only the relevant
nonlooping portions for consideration of a given patient.

A similar problem can occur when a rule permits two conclusions
to be made, each about a different clinical parameter. MYCIN
prevents loops in such circumstances by refusing to permit the same
rule to occur twice in the current reasoning chain.

3.4 Propagation of Context Tree

The mechanism by which the context tree is customized for a
given patient has not yet been discussed. As described in § 3.3.2-1,
the consultation program begins simply by creating the patient
context and then attempting to execute the goal rule. All additional
nodes in the context tree are thus added automatically during the
unwinding of MYCIN’s reasoning regarding the PREMISE of the goal
rule. This section first explains the data structures used for creating
new nodes; then mechanisms for deciding when new nodes should be
added are discussed.

3.4.1 DATA STRUCTURES USED FOR SPROUTING BRANCHES

Section 3.2.2-1 was devoted to an explanation of the context tree.
At that time, I described the different kinds of contexts and ex-
plained that each node in the tree is an instantiation of the appropri-

137

ate context-type.
properties:

PROMPT1 -

PROMPT2 -

PROMPT3 -

PROPTYPE -
SUBJECT -

SYN -

TRANS -
TYPE -

MAINPROPS -

ASSOCWITH -

MYCIN

Each context-type is characterized by the following

a sentence used to ask the user whether the first node of
this type should be added to the context tree; expects a”
“yes—no” answer.

a sentence used to ask the user whether subsequent nodes
of this type should be added to the context tree.

replaces PROMPT 1 when it is used; this is a message to be
printed out if MYCIN assumes that there is at least one
node of this type in the tree.

indicates the category of clinical parameters (see § 3.2.3-2)
that may be used to characterize a context of this type.
indicates the categories of rules that may be applied to a
context of this type.

indicates a conversational synonym for referring to a
context of this type; MYCIN uses SYN when filling in the
asterisk of PROMPT properties for clinical parameters.
used for English translations of rules referencing this type
of context.

indicates what kind of internal name to give a context of
this type.

lists the clinical parameters, if any, that are to be
automatically traced (by FINDOUT) whenever a context of
this type is created.

gives the context-type of nodes in the tree immediately
above contexts of this type.

Two sample context-types are shown in Figure 3-10. The follow-

ing observations
figure:

may help clarify the information given in that

(1) PRIORCULS: Whenever a prior culture is created, it is given the name
CULTURE-# (see TYPE), where # is the next unassigned culture number.
The values of SITE and WHENCUL are immediately traced using the
FINDOUT mechanism (see MAINPROPS). The culture node is put in the
context tree below a node of type PERSON (see ASSOCWITH) and the
new context may be characterized by clinical parameters of the type
PROP-CUL (see PROPTYPE). The prior culture may be the context for
either PRCULRULES or CULRULES (see SUBJECT) and is translated, in
questions to the user, as “this <site> culture” (see SYN) where “<site>" is
replaced by the site of the culture if it is known. The use of PROMPT1

138

Consultation System

PRIORCULS

ASSOCWITH:
MAINPROPS:
PROMPT1:

PROMPT2:

PROPTYPE:
SUBJECT:
SYN:
TRANS:
TYPE:

CURORG

ASSOCWITH:
MAINPROPS:
PROMPT2:

PROMPT3:
PROPTYPE:
SUBJECT:
SYN:
TRANS:
TYPE:

PERSON

(SITE WHENCUL)

(Were any organisms that were significant (but no longer
require therapeutic attention) isolated within the last approxi-
mately 30 days?)

(Any other significant earlier cultures from which pathogens
were isolated?)

PROP-CUL

(PRCULRULES CULRULES)

(SITE (this * culture))

(PRIOR CULTURES OF %)

CULTURE-

CURCUL

(IDENT GRAM MORPH SENSITIVS)

{Any other organisms isolated from * for which you would
like a therapeutic recommendation?)

(I will refer to the first offending organism from * as:)
PROP-ORG

(ORGRULES CURORGRULES)

(IDENT (the *))

(CURRENT ORGANISMS OF *)

ORGANISM-

Figure 3-10: Context trees such as those shown in Figure 3-1 are generated from prototype
context-types such as those shown here. The defining “properties” are described in the text.

and PROMPT2 is demonstrated in the sample consultation at the end of

Chapter 1.

(2) CURORG: Since there is a PROMPT3 rather than a PROMPT1, MYCIN
prints out the PROMPT3 message and assumes (without asking) that there
is at least one CURORG for each CURCUL (see ASSOCWITH); the other

CURORG properties

correspond to those described above for

PRIORCULS.

Whenever MYCIN creates a new context using these models, it
prints out the name of the new node in the tree, e.g.:

139

MYCIN
-------- ORGANISM-1---mnmm-

Thus the user is familiar with MYCIN’s internal names for the
cultures, organisms, and drugs under discussion. The node names
may then be used in MYCIN’s questions at times when there may be
ambiguity regarding which node is the current context, e.g.:

Is the patient’s illness with the staphylococcus (ORGANISM-2) a
hospital-acquired infection?

It should also be noted that when PROMPT1 or PROMPT2 is used
to ask the physician a question, he need not be aware that the
situation is different from that occurring when FINDOUT asks
questions. All the user options described in § 3.3.2-2 operate in the
normal fashion.

Finally, the MAINPROPS property requires brief explanation. The
claim was previously made that clinical parameters are traced and
their values requested by FINDOUT only when they are needed for
evaluation of a rule that has been invoked. Yet, we must now
acknowledge that certain LABDATA parameters are automatically
traced whenever a node for the context tree is created. The reason
for this departure is our attempt to keep the program acceptable to
physicians. Since the order of rules on UPDATED-BY lists is arbi-
trary, the order in which questions are asked is somewhat arbitrary as
well. We have found that physicians are annoyed if the “basic”
questions are not asked first, as soon as the context is created. The
MAINPROPS convention forces certain standard questions early in
the characterization of a node in the context tree. Parameters not on
the MAINPROPS list are then traced in an arbitrary order that
depends upon the order in which rules are invoked.

The MAINPROPS convention may be compared to the antecedent
theorems of PLANNER that were discussed in § 3.3.1. Although I
argued then against a system based solely upon antecedent theorems,
I did acknowledge that they were powerful for certain purposes
when they did not clutter memory with unnecessary information.
Since the parameters on MAINPROPS lists are important pieces of
information that would uniformly be traced by FINDOUT anyway,
the convention we have implemented forces a standardized ordering
of the “basic’ questions without generating useless information.

140

Consultation System
3.4.2 EXPLICIT MECHANISMS FOR BRANCHING

There are two situations under which MYCIN attempts to add new
nodes to the context tree. The simpler case occurs when rules
explicitly reference contexts that have not yet been created. Sup-
pose, for example, MYCIN is trying to determine the identity of a
current organism and therefore invokes the following
CURORGRULE:

RULEQO4

IF: 1) THE IDENTITY OF THE ORGANISM IS NOT KNOWN
WITH CERTAINTY, AND
2) THIS CURRENT ORGANISM AND PRIOR ORGANISMS
OF THE PATIENT AGREE WITH RESPECT TO THE
FOLLOWING PROPERTIES: GRAM MORPH

THEN: THERE IS WEAKLY SUGGESTIVE EVIDENCE THAT
EACH OF THEM IS A PRIOR ORGANISM WITH THE SAME
IDENTITY AS THIS CURRENT ORGANISM

The second condition in the PREMISE of this rule references other
nodes in the tree, namely nodes of the type PRIORORGS. If no such
nodes exist, the MONITOR asks FINDOUT to trace PRIORORGS in
the normal fashion. The difference is that PRIORORGS is not a
clinical parameter but a context-type. FINDOUT therefore uses
PROMPT1 of PRIORORGS to ask the user if there is at least one
organism. If so, an instantiation of PRIORORGS is added to the
context tree and its MAINPROPS are traced. PROMPT2 is then used
to see if there are any additional prior organisms and the procedure
continues until the user indicates there are no more PRIORORGS
that merit discussion. Finally, FINDOUT returns the list of prior
organisms to the MONITOR so that the second condition in
RULEQO4 can be evaluated.

3.4.3 IMPLICIT MECHANISMS FOR BRANCHING

There are two kinds of implicit branching mechanisms. One of
these is closely associated with the example of the previous section.
As shown in Figure 3-1, a prior organism is associated with a prior
culture. But the explicit reference to prior organisms in RULEQQO4

141

MYCIN

made no mention of prior cultures. Thus, if FINDOUT tries to create
a PRIORORGS in response to an explicit reference but finds there
are no PRIORCULS, the program knows there is an implied need to
ask the user about prior cultures before asking about prior organisms.
Since PRIORCULS are associated with the patient himself, and since
the patient node already exists in the context tree, only one level of
implicit branching is required in the evaluation of RULEQO4.

The other kind of implicit branching occurs when the MONITOR
attempts to evaluate a rule for which no appropriate context exists.
For example, the first rule invoked in an effort to execute the goal
rule is a CURORGRULE (see RULEQ90, Figure 3-9). Since no
current organism has been created at the time the MONITOR is
passed this CURORGRULE, MYCIN automatically attempts to cre-
ate the appropriate nodes and then to apply the invoked rule to each.

3.5 Selection of Therapy

The discussion in § 3.3 and 3.4 concentrated on the PREMISE of
MYCIN’s principal goal rule (RULEQ092, § 3.3.2-1). This section
explains what happens when the PREMISE is found to be true and
the two-step ACTION clause is executed.

Unlike other rules in the system, the goal rule does not lead to a
conclusion (§ 3.3.3-2) but instead instigates actions. The functions in
the ACTION of the goal rule thus correspond to the <actfunc> class
that was introduced in the BNF description of § 3.2.1-2. The first of
these functions causes a list of potential therapies to be created. The
second allows the best drug or drugs to be selected from the list of
possibilities.

3.5.1 CREATION OF POTENTIAL THERAPY LIST

There is a class of decision rules, the THERULES (§ 3.2.2-2), that
are never invoked by MYCIN’s regular control structure because they
do not occur on the UPDATED-BY list of any clinical parameters.
These rules contain sensitivity information for the various organisms
known to the system. For example:

RULEOQ88

IF: THE IDENTITY OF THE ORGANISM IS PSEUDOMONAS
142

Consultation System

THEN: | RECOMMEND THERAPY CHOSEN FROM AMONG THE
FOLLOWING DRUGS:

1-COLISTIN {.98)
2-POLYMYXIN (.96)
3 - GENTAMICIN (.96)
4 - CARBENICILLIN (.65)
5 - SULFISOXAZOLE (.64)

The numbers associated with each drug are the probabilities that a
pseudomonas isolated at Stanford Hospital will be sensitive (in vitro)
to the indicated drug. The sensitivity data were acquired from
Stanford’s microbiology laboratory (and could easily be adjusted to
reflect changing resistance patterns at Stanford or the data for some
other hospital desiring a version of MYCIN with local sensitivity
information). Rules such as the one shown here provide the basis for
creating a list of potential therapies. There is one such rule for every
kind of organism known to the system.

MYCIN selects drugs only on the basis of the identity of offending
organisms. Thus, the program’s first task is to decide, for each
current organism deemed to be significant, which hypotheses regard-
ing the organism’s identity (IDENT) are sufficiently likely so that
they must be considered in choosing therapy. MYCIN uses the CF’s
of the various hypotheses in order to select the most likely identities
(see § 4.7). Each identity is then given an “‘item number” (see below)
and the process is repeated for each significant current organism. The
“Set of Indications™ for therapy is then printed out, e.g.:

My therapy recommendation will be based on the following possible

identities of the organism(s) that seem to be significant:

<ltem 1> The identity of ORGANISM-1 may be
STREPTOCOCCUS-GROUP-D

<lItem 2> The identity of ORGANISM-1 may be
STREPTOCOCCUS-ALPHA

<ltem 3> The identity of ORGANISM-2 is PSEUDOMONAS

Each item in this list of therapy indications corresponds to one of
the THERULES. For example, Item 3 corresponds to RULEQO88
above. Thus, MYCIN retrieves the list of potential therapies for each
indication from the associated THERULE. The default (in vitro)
statistical data are also retrieved. MYCIN then replaces the default
sensitivity data with real data about those of the patient’s organisms,

143

MYCIN

if any, for which actual sensitivity information is available from the
laboratory. Furthermore, if MYCIN has inferred sensitivity informa-
tion from the in vivo performance of a drug that has already been
administered to the patient, this information also replaces the default
sensitivity data. Thus, the “compiled list of potential therapies” is
actually several lists, one for each item in the Set of Indications.
Each list contains the names of drugs and, in addition, the associated
number representing MYCIN’s judgment regarding the organism’s
sensitivity to each of the drugs.

3.5.2 SELECTING PREFERRED DRUG FROM LIST

When MYCIN recommends therapy it tries to suggest a drug for
each of the items in the Set of Indications. Thus, the problem
reduces to one of selecting the best drug from the therapy list
associated with each item. Clearly the probability that an organism
will be sensitive to a drug is an important factor in this selection
process. However, there are several other considerations. MYCIN’s
strategy is to select the best drug on the basis of sensitivity informa-
tion but then to consider contraindications for that drug. Only if a
drug survives this second screening step is it actually recommended.
Furthermore, MYCIN also looks for ways to minimize the number of
drugs recommended and thus seeks therapies that cover for more
than one of the items in the Set of Indications. The selection/screen-
ing process is described in the following two subsections.

3.5.2-1 Choosing Apparent First Choice Drug

The procedure used for selecting the apparent first choice drug is a
complex algorithm that is somewhat arbitrary and is currently
under revision. In this section, I shall therefore describe the pro-
cedure in somewhat general terms since the actual LISP functions
and data structures are not particularly enlightening.

There are three initial considerations used in selecting the best
therapy for a given item:

(1) the probability that the organism is sensitive to the drug;
(2) whether the drug is already being administered;

144

Consultation System

(3) the relative efficacy of drugs that are otherwise equally supported by the
criteria in (1) and (2).

As is the case with human consultants, MYCIN does not insist on a
change in therapy if the physician has already begun a drug that may
work, even if that drug would not otherwise be MYCIN’s first choice.

Drugs with sensitivity numbers within .05 of one another are
considered to be almost identical on the basis of criterion (1). Thus
RULEOQ88 above, for example, indicates no clear preference among
colistin, polymyxin, and gentamicin for pseudomonas infections (if
default sensitivity information from the rule is used). However, our
collaborating experts have ranked the relative efficacy of antimicro-
bials on a scale from 1 to 10. The number reflects such factors as
whether the drug is bacteriostatic or bacteriocidal, or its tendency to
cause allergic sensitization. Since gentamicin has a higher relative
efficacy than either colistin or polymyxin, it is the first drug con-
sidered for pseudomonas infections (unless known sensitivity infor-
mation or previous drug experience indicates that an alternate choice
is preferable).

Once MYCIN has selected the apparent best drug for each item in
the Set of Indications, it checks to see if one of the drugs is also
useful for one or more of the other indications. For example, if the
first choice drug for item 1 is the second choice drug for item 2, and
if the second choice drug for item 2 is almost as strongly supported
as the first choice drug, item 1’s first choice drug also becomes item
2’s first choice drug. This strategy permits MYCIN to attempt to
minimize the number of drugs to be recommended.

A similar strategy is used to avoid giving two drugs of the same
drug class. For example, MYCIN knows that if the first choice for
one item is penicillin and the first choice for another is ampicillin,
then the ampicillin may be given for both indications.

In the ideal case, MYCIN will find a single drug that effectively
covers for all the items in the set of indications. But even if each item
remains associated with a different drug, a screening stage to look for
contraindications is required. This rule-based process is described in
the next subsection. It should be stressed, however, that the manipu-
lation of drug lists described above is algorithmic, i.e., it is coded in
LISP functions that are called from the ACTION clause of the goal
rule. There is considerable “knowledge™ in this process. Since rule-

145

MYCIN

based knowledge provides the foundation of MYCIN’s ability to
explain its decisions, it would be desirable eventually to remove this
therapy selection method from functions and place it in decision
rules. I will return to this point in § 3.7.

3.5.2-2 Rule-based Screening for Contraindications

Unlike the complex list manipulations described in the previous
subsection, criteria for ruling out drugs under consideration may be
effectively placed in rules. The rules in MYCIN for this purpose are
termed ORDERRULES. The advantages to placing this knowledge in
rules are the ones I discussed in Chapter 2, i.e., modularity, ease of
modification, and facilitation of explanation and other question—
answering. A sample rule of this type is:

RULEQ55

IF: 1) THE THERAPY UNDER CONSIDERATION IS
TETRACYCLINE, AND
2) THE AGE (IN YEARS) OF THE PATIENT IS LESS
THAN 13

THEN: THERE IS STRONGLY SUGGESTIVE EVIDENCE (.8)
THAT TETRACYCLINE IS NOT AN APPROPRIATE
THERAPY FOR USE AGAINST THE ORGANISM

In order to use MONITOR and FINDOUT with such rules, we
must construct appropriate nodes in the context tree and must be
able to characterize them with clinical parameters. The context-type
used for this purpose is termed POSSTHER (§ 3.2.2-1) and the
parameters are classified as PROP-THER (§ 3.2.3-2). Thus, when
MYCIN has selected the apparent best drugs for the items in the Set
of Indications, it creates a context corresponding to each of these
drugs. POSSTHER contexts occur below CURORGS in the context
tree. FINDOUT is then called to trace the relevant clinical parameter
that collects contraindication information (i.e., this becomes a new
goal statement) and the normal recursive mechanism through the
MONITOR insures that the proper ORDERRULES are invoked.

ORDERRULES allow a great deal of drug-specific knowledge to
be stored. For example, RULEO55 above insures that tetracycline is
ruled out in youngsters who still have developing bone and teeth.

146

Consultation System

Similar rules tell MYCIN never to given streptomycin or carbenicillin
alone, not to give sulfonamides except in urinary tract infections,
and not to give cephalothin, clindamycin, lincomycin, vancomycin,
cefazolin, or erythromycin if the patient has meningitis. Other
ORDERRULES allow MYCIN to consider the patient’s drug aller-
gies, dosage modifications, or ecological considerations (e.g., save
gentamicin for pseudomonas, serratia, and hafnia unless the patient is
so sick that you cannot risk using a different aminoglycoside while
awaiting lab sensitivity data). Finally, there are rules that suggest
appropriate combination therapies (e.g., add carbenicillin to genta-
micin for known pseudomonas infections). In considering such rules
MYCIN often is forced to ask questions that never arose during the
initial portion of the consultation. Thus the physician is asked
additional questions during the period after MYCIN has displayed
the items in the Set of Indications but before any therapy is actually
recommended.

After the presumed first-choice drugs have been exposed to the
ORDERRULE screening process, MYCIN checks to see whether any
of the drugs is now contraindicated. If so, the process described in §
3.5.2-1 is repeated. New first-choice drugs are then subjected to the
ORDERRULES as I have described above. The process continues
until all the first-choice drugs are found to have been instantiated
already as POSSTHERS. These then become the system’s recommen-
dations. Note that this strategy may result in the recommendation of
drugs that are only mildly contraindicated so long as they are
otherwise strongly favored. The therapy recommendation itself takes
the following form:

My preferred therapy recommendation is as follows:
In order to cover for ltems <1> <2> <3>:
Give the following in combination:

1. PENICILLIN
Dose: 285,000 UNITS/KG/DAY - IV

2. GENTAMICIN
Dose: 1.7 MG/KG Q8H - IV OR IM
Comments: MODIFY DOSE IN RENAL FAILURE

The user may also ask for second, third, and subsequent therapy
recommendations until MYCIN is able to suggest no reasonable
alternatives. The mechanism for these iterations is merely a repeat of

147

MYCIN

the processes described above but with recommended drugs removed
from consideration.

3.6 Mechanisms for Storage of Patient Data

3.6.1 CHANGING ANSWERS TO QUESTIONS

If a physician decides he wants to change his response to a
question that he has already answered, MYCIN must do more than
merely redisplay the prompt, accept the user’s new answer, and make
the appropriate change to the value of the clinical parameter in
question. The question was originally asked because the PREMISE of
a decision rule referenced the clinical parameter. Thus, his original
response affected the evaluation of at least one rule, and subsequent
pathways in the reasoning network may have been affected as well. It
is therefore necessary for MYCIN somehow to return to the state it
was in at the time the question was originally asked. Its subsequent
actions can then be determined by the corrected user response.

Reversing all decisions made since a question was asked is a
complex problem, however. The most difficult task is to determine
what portions of a parameter’s cumulative CF preceded or followed
the question requiring alteration. In fact, the extra data structures
needed to permit this kind of backing up are so large and compli-
cated, and would be used so seldom, that it seems preferable simply
to restart the consultation from the beginning when the user wants
to change one of his answers.

Restarting is of course also less than optimal, particularly if it
requires that the physician reenter the answers to questions that were
correct the first time around. Our desire to make the program
acceptable to physicians required that we devise some mechanism for
changing answers, but restarting from scratch also had obvious draw-
backs regarding user acceptance of the system. We therefore needed a
mechanism for restarting MYCIN’s reasoning process but avoiding
questions that had already been answered correctly. When FINDOUT
asks questions it therefore uses the following algorithm:

[1] before asking the question, check to see if the answer is already stored
(in the Patient Data Table, see [3]); if the answer is there, use that value
rather than asking the user; otherwise go to [2].

148

Consultation System

[2] ask the question using PROMPT or PROMPT1 as usual.
[3] store the user’s response in the Patient Data Table under the appropriate
clinical parameter and context.

The Patient Data Table, then, is a growing record of the user’s
responses to questions from MYCIN (see Patient Data, Figure 1-1). It
is entirely separate from the dynamic data record (§ 3.3.3-1) thatis
explicitly associated with the nodes in the context tree. Note that
the Patient Data Table contains only the text responses of the user;
there is no CF information (unless included in the user’s response),
nor are there data derived from MYCIN’s rule-based inferences.

The Patient Data Table and the FINDOUT algorithm above make
the task of changing answers much simpler. The technique MYCIN
uses is the following:

[al Whenever the user wants to change the answer to a previous question, he
enters CHANGE <numbers>, where <numbers> is a list of the ques-
tions whose answers need correction (see § 3.3.2-2);

[b] MYCIN looks up the indicated question numbers in its question record
(see § 3.3.3-3);

[c] The user’s responses to the indicated questions are removed from the
current Patient Data Table; -

[d] MYCIN reinitializes the system, erasing the entire context tree, includ-
ing all associated parameters; however, it leaves the Patient Data Table
intact except for the responses deleted in [c] ;

[e] MYCIN restarts the consultation from the beginning.

This simple mechanism results in a restarting of the Consultation
System (Subprogram 1) but does not require that the user enter
correct answers a second time. Since the Patient Data Table is saved,
step [1] of the FINDOUT algorithm above will find all the user’s
responses until the first question requiring alteration is reached.
Thus, the first question asked the user after he gives the CHANGE
command is, in fact, the earliest of the questions he wants to change.
There may be a substantial pause after the CHANGE command while
MYCIN reasons through the network to the first question requiring
alteration, but a pause is to be preferred over a mechanism requiring
reentry of all question answers. The implemented technique is en-
tirely general because answers to questions regarding tree propaga-
tion (§ 3.4.1) are also stored in the Patient Data Table.

149

MYCIN
3.6.2 REMEMBERING PATIENTS FOR FUTURE REFERENCE

When a consultation is complete, the Patient Data Table contains
all responses necessary for generating a complete consultation for
that patient. It is therefore straightforward to store the Patient Data
Table (on disk or tape) so that it may be reloaded in the future.
FINDOUT will automatically read responses from the Table, rather
than ask the user, so a consultation may be run several times on the
basis of only a single interactive session.

There are two reasons for storing Patient Data Tables for future
reference. One is their usefulness in evaluating changes to MYCIN’s
knowledge base. The other is the resulting ability to re-evaluate
patients once new clinical information becomes available.

3.6.2-1 Evaluating New Rules

New rules may have a large effect on the way a given patient case
is handled by MYCIN. For example, a single rule may reference a
clinical parameter not previously sought or may lead to an entirely
new chain in the reasoning network. It is therefore useful to reload
Patient Data Tables and run a new version of MYCIN on old patient
cases. A few new questions may be asked (because their responses are
not stored in the Patient Data Table). Conclusions regarding orga-
nism identities may then be observed, as may the program’s thera-
peutic recommendations. Any changes from the decisions reached
during the original run (i.e., when the Patient Data Table was
created) must be explained. When a new version of MYCIN evaluates
several old Patient Data Tables in this manner, aberrant side effects
of new rules may be found. Thus stored patient cases provide a
useful mechanism for screening new rules before they become an
integral part of MYCIN’s knowledge base.

3.6.2-2 Re-evaluating Patient Cases

The second use for stored Patient Data Tables is the re-evaluation
of a patient once additional laboratory or clinical information be-
comes available. If a user answers several questions with UNKNOWN
during the initial consultation session, MYCIN’s advice will, of
course, be based on less than complete information. After storing the

150

Consultation System

Patient Data Table, however, the physician may return for another
consultation in a day or so once he has more specific information.
MYCIN can use the previous Patient Data Table for responses to
questions whose answers are still up-to-date. The user therefore needs
to answer only those questions that reference new information. A
mechanism for the physician to indicate directly what new data are
available has not yet been automated, however.

A related capability to be implemented before MYCIN becomes
available in the clinical setting is a SAVE command. If a physician
must leave the computer terminal midway through a consultation,
this option will save the current Patient Data Table on the disk.
When he returns to complete the consultation he will reload the
patient record and the session will continue from the point at which
he entered the SAVE command.

It should be understood that saving the current Patient Data Table
is not the same as saving the current state of MYCIN’s reasoning.
Thus, as we have stated above, changes to MYCIN’s rule corpus may
result in different advice from an identical Patient Data Table.
Finally, I wish to emphasize our awareness that disk storage of
patient information immediately raises questions of data confiden-
tiality. We will attempt to insure appropriate data protection when
MYCIN is available in the clinical setting.

3.7 Future Extensions

In this section I summarize some current ideas for improvement of
the consultation program described in this chapter. Each of the
topics mentioned is the subject of current efforts by one or more of
the researchers currently associated with the MYCIN project.

3.7.1 DYNAMIC ORDERING OF RULES

The order in which rules are invoked by the MONITOR is cur-
rently controlled solely by their order on the UPDATED-BY proper-
ty of the clinical parameter being traced. (An exception to this point
is the self-referencing rules, see § 3.3.4.) The order of rules on the
UPDATED-BY property is also arbitrary, tending to reflect nothing
more than the order in which rules were acquired. Since FINDOUT

151

MYCIN

sends all rules on such lists to the MONITOR, and since our certainty
factor combining function is commutative (§ 4.6), the order of rules
is unimportant.

Some rules are much more useful than others in tracing the value
of a clinical parameter. For example, a rule with a six-condition
PREMISE that infers the value of a parameter with a low CF requires
a great deal of work (as many as six calls to FINDOUT) with very
little gain. On the other hand, a rule with a large CF and only one or
two PREMISE conditions may easily provide strong evidence regard-
ing the value of the parameter in question. It may therefore be wise
for FINDOUT to order the rules in the UPDATED-BY list on the
basis of both information content (CF) and the work necessary to
evaluate the PREMISE. Then if the first few rules are successfully
executed by the MONITOR, the CF associated with one of the values
of the clinical parameter may be so large that invocation of subse-
quent rules will require more computational effort than they are
worth. If FINDOUT therefore ignores such rules (i.e., does not
bother to pass them to the MONITOR), considerable time savings
may result. Furthermore, entire reasoning chains will in some cases
be avoided and the number of questions asked the user could
accordingly be decreased.

3.7.2 DYNAMIC ORDERING OF CONDITIONS WITHIN RULES

The MONITOR diagram in Figure 3-7 reveals that conditions are
evaluated strictly in the order that they occur within the PREMISE
of the rule. In fact, I have stressed that the order of conditions is
therefore important and that the most commonly referenced clinical
parameters should be placed earliest in the PREMISE.

Suppose, however, that in a given consultation the clinical parame-
ter referenced in the fourth condition of a rule has already been
traced by FINDOUT because it was referenced in some other rule
that the MONITOR has already evaluated. As currently designed,
MYCIN checks the first three conditions first, even if the fourth
condition is already known to be false. Since the first three condi-
tions may well require calls to FINDOUT, the rule may generate
unnecessary questions and expand useless reasoning chains.

The solution to this problem would be to redesign the MONITOR
so that it reorders the PREMISE conditions, first evaluating those

152

Consultation System

that reference clinical parameters which have already been traced by
FINDOUT. In this way a rule will not cause new questions nor
additions to the reasoning network if any of its conditions are known
to be false at the outset.

3.7.3 PRE-SCREENING OF RULES

An alternate approach to the problem described in the preceding
section would be for FINDOUT to judge the implications of every
parameter it traces. Once the value has been determined by the
normal mechanism, FINDOUT could use the LOOKAHEAD list for
the clinical parameter in order to identify all rules referencing the
parameter in their PREMISE conditions. FINDOUT could then eval-
uate the relevant conditions and mark the rule as failing if the
condition turns out to be false. Then, whenever the MONITOR
begins to evaluate rules that are invoked by the normal recursive
mechanism, it will check to see if the rule has previously been
marked as false by FINDOUT. If so, the rule could be quickly ruled
out without needing to consider the problem of re-ordering the
PREMISE conditions.

At first glance, the dynamic re-ordering of PREMISE conditions
appears to be a better solution than the one I have just described.
The problem with rule pre-screening is that it requires consideration
of all rules on the parameter’s LOOKAHEAD list, some of which
may never actually be invoked during the consultation. Thus the
disadvantages are similar to those that can accompany the PLAN-
NER antecedent theorems that were previously described (§ 3.3.1).

3.7.4 PLACING ALL KNOWLEDGE IN RULES

Although most of MYCIN’s knowledge is placed in decision rules,
I have pointed out several examples of knowledge that is not rule-
based. The simple lists and knowledge tables of § 3.2.6 may perhaps
be justified on the basis of efficiency arguments, especially since
those knowledge structures may be directly accessed and utilized by
rules.

However, the algorithmic mechanisms for therapy selection that
were described in § 3.5 are somewhat more bothersome. Although
we have managed to put many drug-related decision criteria in the

153

MYCIN

ORDERRULES, the mechanisms for creating the potential therapy
lists and for choosing the apparent first choice drug are programmed
explicitly in a series of relatively complex LISP functions. Since
MYCIN’s ability to explain itself is based upon rule-retrieval (Chapter
5), the system cannot give good descriptions of these drug selection
procedures. It is therefore desirable to place more of the drug
selection knowledge in rules.

Such efforts should provide a useful basis for evaluating the power
of our rule-based formalism. If the goal-oriented control structure we
have developed is truly general, one would hope that algorithmic
approaches to the construction and ordering of lists could also be
placed in decision rule format. We therefore intend to experiment
with ways of incorporating the remainder of MYCIN’s knowledge
into decision rules that are invoked by the standard MONITOR/
FINDOUT process.

3.7.5 NEED FOR CONTEXT GRAPH

The context tree used by MYCIN is the source of one of the
system’s primary problems in attempting to simulate the consulta-
tion process. As was pointed out in § 3.2.2-1, every node in the
context tree leads to the uppermost patient node by a single path-
way. In reality, however, drugs, patients, organisms, and cultures are
not interrelated in this highly structured fashion. For example, drugs
are often given to cover for more than one organism. The context
tree does not permit a single CURDRUG or PRIORDRUG to be
associated with more than a single organism. What we need, there-
fore, is a network of contexts in the form of a graph rather than a
pure tree. The current reasons why MYCIN needs a tree structured
context network are explained in § 3.2.2. We have come to recognize
that a context graph capability is an important extension of the
current system, however, and this will be the subject of future design
modifications. When implemented, for example, it will permit a
physician to discuss a prior drug only once even though it may have
been given to cover for several prior organisms.

3.8 Advantages of MYCIN Approach

There are four principal advantages of the MYCIN approach that
have contributed to the system’s current level of success. Each of

154

Consultation System

these distinguishes MYCIN from the medical decision making pro-
grams described in § 1.3. They also reflect MYCIN’s debt to previous
work in the Al field.

3.8.1 MODULARITY OF KNOWLEDGE

As discussed in Chapter 2, one of the major design considerations
during the development of MYCIN has been the isolation of pieces of
knowledge as discrete facts. MYCIN’s decision rules achieve this goal.
Since each rule represents a discrete packet of knowledge, the inte-
gration of new information into the system is simplified. Further-
more, the rules can serve as the basis for MYCIN’s explanation and
question-answering capabilities (Chapter 5).

Modularity of knowledge is seldom found in diagnostic programs.
Some statisticians would argue, in fact, that the interrelationships of
observations are so complex that a formal Bayesian approach is the
only reasonable way to guarantee good predictions. As I argue in
Chapter 4, however, the statistician’s stance is greatly weakened
when the knowledge is primarily judgmental and it defies statistical
formulation. By accepting the inexact nature of many medical deci-
sions, and by acknowledging that the quantification scheme accom-
panying our rules is only an approximation technique, we are left
free to isolate our knowledge statements and to reap the associated
benefits provided by that representation scheme. In fact, almost all
of those capabilities that make MYCIN truly innovative may be
directly attributed to the program’s rule-based representation of
knowledge.

3.8.2 DYNAMIC REASONING CHAIN

It is reasonable to ask why MYCIN does not create an explicit
decision tree from its rules, code them for maximal efficiency, and
then rely upon conventional techniques for decision analysis based
upon progression through a branching tree. It must be remembered,
however, that the reasoning network for MYCIN is goal-oriented
(Figure 3-9). Conventional decision trees start at the top node and
follow a path through the tree based on decisions reached at each
subsequent node. When a terminal node in the tree is finally reached,
that is the diagnosis. MYCIN’s terminal nodes, on the other hand,
correspond to starting points in the accumulation of data (i.e., ASK1

155

MYCIN

or ASK2 nodes, Figure 3-9). MYCIN’s task is to determine which of
these terminal nodes to use in an effort to reach the top of the tree.
Thus, the form of MYCIN’s reasoning network is distinctive from a
conventional decision tree in that the top node represents the goal
for MYCIN rather than the starting point.

Although MYCIN’s rules do not naturally form a conventional
decision tree, it is possible that a researcher with experience con-
structing decision trees could, in time, convert MYCIN’s knowledge
base into a traditional tree-shaped format. This has not seemed to be
a particularly natural approach, however. There are three principal
factors that would complicate any such attempt:

(1) Although decision theory has provided mechanisms for incorporating
probabilistic knowledge into decision trees, there is no obvious mecha-
nism for combining MYCIN’s certainty factors with a branching network;

(2) MYCIN’s current control structure depends upon a dynamic set of
contexts and the ability to use rules more than once; this suggests that a
decision tree using MYCIN’s knowledge would need to have mechanisms
for reusing certain portions, perhaps by defining decision tree “macros”;

(3) MYCIN’s reasoning network is actually not tree-shaped; this complexity
was not shown in the sample network of Figure 3-9, but since MYCIN’s
rules often form reasoning loops (§ 3.3.5) and since a single observation
often affects several of the ascending branches in the network, a graph
structure would actually provide a more accurate representation of MY-
CIN’s reasoning network.

It has also been suggested that, even if we do not convert MYCIN’s
reasoning network to a conventional decision tree, we could at least
explicitly “compile” it. It should be noted, however, that since
MYCIN works backwards from the goal-rule, there is no disadvantage
to creating a dynamic reasoning chain as it proceeds. The total
network that could be created from MYCIN’s rules is so vast that it
appears preferable simply to create the portion of the network that is
appropriate for the patient under consideration. An explicit network
would not avoid the need for MYCIN to work backwards from the
topmost goal node. Furthermore, it would introduce the obvious
disadvantage that newly acquired rules could not be automatically
incorporated into MYCIN’s reasoning as they are by the current
dynamic control structure.

156

Consultation System
3.8.3 DOMAIN-INDEPENDENT CONTROL STRUCTURE

Except for the functions described in § 3.5, most of MYCIN’s
functions are domain-independent. In particular, the entire
MONITOR/FINDOUT mechanism contains no explicit knowledge of
the problem domain for which it has been designed. It is therefore
tempting to consider writing new rules for additional medical (or
nonmedical) problem areas and to see whether the MYCIN formalism
will allow valid consultations in those areas as well. Of course, new
clinical parameters and their associated properties would also have to
be created, but the resulting knowledge structures are designed to be
capable of forming the basis both for consultation sessions using
Subprogram 1 and for question-answering sessions using Subprogram
2 (Chapter 5).

Use of the MYCIN approach for another problem area has not yet
been attempted, however, and it would therefore be premature to
claim that MYCIN’s approach can indeed be generalized for other
domains. One reason that we have not attempted to apply the
approach elsewhere is our recognition, based on experience to date,
that the formulation of new decision rules is no straightforward
matter, at least for medical applications. Physicians have not in
general structured their own decision processes, and a clinical expert
who consistently makes excellent recommendations may have great
difficulty describing the steps in reasoning that he uses to make his
decisions. Thus, although we are hopeful that the MYCIN formalism
can be adapted to another problem area with minimal modification,
such efforts would be distracting at a time when our principal
concern is the expansion of MYCIN’s clinical expertise regarding
antimicrobial therapy.

3.8.4 REASONING WITH JUDGMENTAL KNOWLEDGE

The primary advantage of the MYCIN approach, however, is its
ability to model medical reasoning that is based upon neither diag-
nostic algorithms, physiological models, nor statistical analysis. In
fact, MYCIN’s principal contribution to the field of computer-based
medical decision making may well be its reasoning model that uses
the informal judgmental knowledge of physician experts. Other pro-
grams have attempted to use ‘“‘estimates” provided by expert physi-

157

MYCIN

cians [Leaper, 1972] but have been limited by efforts to couch these
estimates in probabilistic terms. MYCIN not only provides an intui-
tively pleasing mechanism for recording (decision rules) and inter-
preting (certainty factors) these numbers, but it provides a flexible
control structure and interactive capabilities that encourage the phy-
sician to accept the program as the useful and cooperative clinical
tool that it is designed to be.

158

